我想通过解码base64将位图发布到服务器。但解码后,我只能显示图像的一部分(图像的顶部)。我怎么解决这个问题? 我不会写代码发布,因为它们是成功的工作。在bitmapToString函数中,我可以获得base64字符串,并尝试显示它们,但我只能看到一部分图像。
代码:
/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/2wBDAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQH/wAARCAIAAgADASIAAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQAAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3ODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWmp6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEAAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwD/AD/6KKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiij/P8AP3+n5nnjk/r9O/8AXe+oBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUf1+aXXy/PVtNs/r80uvl+erabZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAd58L/AOsfFH4geFvh9oKhtW8UaiNO08Mu5TMYLicZXemfkhbjeMEkk8HP9YnwW/wCDe/x+nwPurzx34dtLrxZcLp9zZXC2saBYJo72RvkN9IWyDBzvHfINfzI/so+NtN8B/HL4deIb+FGGmeIFuRMxdRGPsl4mdwOF+9wf9o85Jr/Ry/ZZ/ahi+MXgvTNT03WI3sorTTrZ4Y51dSRBLEM5XdkeSfzIyCDn+PPpSeJniJ4fQyJ8KU6NDK8TSnUzDH1cPKo44uOKlChSjONaM4QqQi+aNrNWbd7X8nMcdXwn8OCalFrnaTUZczSe+mi0ttpd3+L/AD0/2z/2UfFn7M3xS8Q+FNYsjbQaYVX5YDGgIkdTgiWQdlx83oODnd8T1/oQ/wDBWn9hrRP2h/gvquseFNLtbXxddPeSSarCqyXToDaugZZJNoA2vjjJDNknrX8D/wATfh9q3wz8Z674Q1WGdZ9FuhbSTSxFBIxQNkY+X+IcKe+OQhz+keAXi9g/FHhKjUxFWnDPsujHD5lheZKcvZKnT+uRjd2pV6k24RcpTSS5noaZZjY4uhr/ABIWUldX3kr23Sb2W+/Rtrz6iiiv3s9IKKKKACiiigAoooo07/1t3/ru3qAUUUUf1+S7+n3rrqwKKKKP6/Pzfb89XZ3AooooAKKKKACgAk4HJ/8A1j19v5c85JW74a8Pal4p1e30bSbae7vbjPkwW0TzTPtYD5Y1BZjz27k9zzE5xpwnOclGMIuUpSdoqK5rybvokkm30XNu1qrqz12/4K2+X/Bu039E/slfsuePv2r/AIoW/wAN/AVr52rSG1fD27Spsle57ebEM4hb+Pjuck5/pq+Iv/Bv14s0n4E6PreneGraLxJa6Jd3er3Bt0y0kM0z7sfbOP3SLjk985JJr75/4Iif8E/dO+Dfwx8IftG+LNLgXULyJI5ra7RIL5TBHIQXh84Trk3J6pyd3OcZ/SH9rT9oy08F+EvEvm6pHa2C6XfrFavMqL5YhkBjXIyQx4A7kgAEg5/zm8XfpLcW4jxDjwt4cVsPLCZZiqeFxFV0ZV/rOYQqzo4qjzQqQcoR9nzRjblV37zd2/ncVm1RValDDKL+GLk4uXvKck7WfTftsrttt/5oHxv+C/iX4K+LtT8O+Io1jkg1G4tYwqbB+6MhIx5snQDjk9eTkivFK+4v25PjNoXxd+J2qXOjWK2v2DWLwTuvmkTMFkiLZkHO5jn5eOOpAr4dr+/OFcVmmO4eyzFZzRWHzGthKE8VS5VFRqOMnpFSduZe9a7a5o3be/vUJTlSTqfFZX9fe835fhvYKKKK+gNQooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigCWCea1lSe3kaKaM7o5EJDo2GGVIPBwx9eDj1J/oZ/4JIft06j4A1LQ/hJr15LLa6lcrI+o3kyuY1gmuQBkhpAMXJwFB6LkE4J/nhrsPAvjTVvh/4js/E2jOwvrLPk4kaMfMyk5YB8Y2DHynnr0zXxHiBwTlnH3C+ZcP5lRp1FiKUpYac1rSxcYVo4etGV1b2cpqdneO3Mn7xz4nDxxFGdOXVaPzvKz017O1+iWrd3/qWeB/F2g+OdBRGktdVsLiN1RmUyRN5iuMhWTPYHpnBPJ21/JZ/wWm/4J83Hgff8U/AdhJrE/iS+F7fW2nxMv2SJbyCBi4nkjTasQ8whCTjPVjtr7w/4JZftu6Z8RvA3hrwhrGsq3icLG09mHVyA6yBf3hVGb/Vn+DqMd81+z/xZ8EeG/jh8OtW0TWUjuH/sXUIrQG3jlzM8UrIAC64y4UZBJBzwDnd/lfw7mHEv0efFScK0K6wlDGRo4zDz5408xy5VakaM2rL3W/3qlSavb4mtH8jSnVy7FO6aimk1Zq6TlZ9VrdfLrrKR/l33drPZXVxZ3MbRT20jRSxtjcjoWDK2CRkYHQ/3upGDXr9HP+ChP7Jmu/s4/Eu+a70p7K11/WLu4tGbcvmQyRyXCEKxbGVwcA4wRye/5zxRNLJ5YzuzgD1OSPfHT3/EkZ/1q4c4gy7iXJMDneXV4V8JjaFOrTqQkpK7TVRXjKXwSutXey1vJa/Y0asK1OM4u6aTv/4Ens+/L+Nm1dkf+f5j1Pp/PkkEk/H+fv6A+n6j0NfX3wU/YZ/aV+P8lsvws8EHXTd7PI/0iSPeHL4GFtZcZ2N+Wc9Sf2z/AGUv+DeH9prxzqcD/GT4ZXOk6XM8J86Ge4nPlkShztEdn0ZRkbucjnIzXnZzxzwvkVOtPHZthFOgr1MNSr0p4pWbTXsfaKV9NvXVtO/RClUqO0ISl0uk7fa3ey+G/wA11ufzMQWk106xW4Msjnakaj5mb5uBk4z8vr36k4z6PoPwT+LHijZ/wj/gfWNU342fZ1tfm64x5lynXHf2655/0Tvgf/wa1fsWW1hZar4/vNasNWhhim8n+y7mUGcl1cEnxNF0Ukg7MHBGOHNfqB8J/wDgij+xl8IRAPDs89ybbZs+0aICCU3jnfrc5/PuRzkHP4dnv0pfD/LI1aeCxlKtXp+7KljpLDNyTmuWK9tzPRdm229bu51QwFZ6TlSjtq5pPeS1Tej0Xfpp/N/lk6Z+xR+1nqqq2m/AvxfeK2NpiTSsEfNjhtRHoeR755OT1dt/wT1/bdutph/Zw8cyKccqmi9Mtzzq3ov/AOsnFf6/fhP9lb4R+CoY49F0jTLgRAbDLo1mPukgE7nl69ec/wAsewWPhHR9Lj8uz8L6CwQAAtpGncDc2M5tG/2+vTPUgc/mOI+mbgqc5xocNU8VCK0qYeeLqxau0neEnfbXotNbvXVYCCupVJX0s6cVJatq++u2nR+69Fdy/wAb1v8Agm9+28sRcfs4+OyQoIBXRs53Ec51fH5nkHGeAaw
例如,图像的base64字符串是这样的:(来自bitmapToString函数行:Log.d(" BitmapToString",result);)
import numpy
from scipy.optimize import linprog
A = 10
B = 20
m = 2
n = m * m
# the coefficients of a linear function to minimize.
# setting this to all ones minimizes the sum of all variable
# values in the matrix, which solves the problem, but see below.
c = numpy.ones(n)
# the constraint matrix.
# This is matrix-multiplied with the current solution candidate
# to form the left hand side of a set of normalized
# linear inequality constraint equations, i.e.
#
# x_0 * A_ub[0][0] + x_1 * A_ub[0][1] <= b_0
# x_1 * A_ub[1][0] + x_1 * A_ub[1][1] <= b_1
# ...
A_ub = numpy.zeros((2 * m, n))
# row sums. Since the <= inequality is a fixed component,
# we just multiply everthing by (-1), i.e. we demand that
# the negative sums are smaller than the negative limit -A.
#
# Assign row ranges all at once, because numpy can do this.
for r in xrange(0, m):
A_ub[r][r * m:(r + 1) * m] = -1
# We want that the sum of the x in each (flattened)
# column is smaller than B
#
# The manual stepping for the column sums in row-major encoding
# is a little bit annoying here.
for r in xrange(0, m):
for j in xrange(0, m):
A_ub[r + m][r + m * j] = 1
# the actual upper limits for the normalized inequalities.
b_ub = [-A] * m + [B] * m
# hand the linear program to scipy
solution = linprog(c, A_ub=A_ub, b_ub=b_ub)
# bring the solution into the desired matrix form
print numpy.reshape(solution.x, (m, m))
当我在img标签显示中使用时,如下所示: http://kombers.org/a.html