错误调整自定义算法与插入符号

时间:2016-08-16 18:26:51

标签: r machine-learning r-caret

我想用插入符调整自定义算法的两个参数。 Un参数(lambda)是数字,另一个参数(previous)是字符。此参数可以采用“已知”或“未知”两个值。我只使用lambda参数调整了算法。没关系。但是当我添加字符参数(先前)时,给出了以下错误:

  

1:在eval(expr,envir,enclos)中:Resample01的模型拟合失败:   lambda = 1,previous = unknown mdp中的错误(Class = y,data = x,lambda =   param $ lambda,previous = param $ prior,:找不到对象'赋值'

错误必须与指定字符参数(先前)的方式相关。这是我的代码:

my_mod$parameters <- data.frame(
  parameter = c("lambda","prior"),
  class = c("numeric", "character"),
  label = c("sample_length", "prior_type"))

## The grid Element

my_mod$grid <- function(x, y, len = NULL){expand.grid(lambda=1:2,prior=c("unknown", "known"))}

mygrid<-expand.grid(lambda=1:2,prior=c('unknown','known'))


## The fit Element

my_mod$fit <- function(x, y, wts, param, lev, last, classProbs, ...){ 
  mdp(Class=y,data=x,lambda=param$lambda,prior=param$prior,info.pred ="yes")
}

## The predict Element

mdpPred <- function(modelFit, newdata, preProc = NULL, submodels = NULL)
  predict.mdp(modelFit, newdata)
my_mod$predict <- mdpPred

fitControl <- trainControl(method = "cv",number = 5,repeats = 5)

train(x=data, y = factor(Class),method = my_mod,trControl = fitControl, tuneGrid = mygrid)

1 个答案:

答案 0 :(得分:0)

这是因为你必须在fit函数中指定as.character(param$prior)