我想最小化一个相当简单的目标函数,但是我在某种程度上遇到了从Python API到CPLEX的正确调用的问题
我查看了如何使用set_quadratic
和set_quadratic_coefficients
here,但这并没有解决我的问题。
我的目标函数有一组线性变量和一组二次变量
varCoefs = [1]*(numB + numQ)
varLower = [0]*(numB + numQ)
varNames = [(x,"b%s"%x) for x in range( numB )]
varNames += [(len(varNames) + x,"q%s"%x) for x in range( numQ )]
varCoefs += [10]*len(deltas)
varLower += [1]*len(deltas)
varNames += [(len(varNames) + x,"delta%s"%x) for x in range( len(deltas) )]
varCoefs += [0]*len(target.v)
varLower += [0]*len(target.v)
sContent = [(len(varNames) + x,"s%s"%x) for x in range( len(target.v) )]
varNames += sContent
varCoefs += [-1]
varLower += [0]
varNames += [(len(varNames),'mu')]
problem.variables.add(obj = varCoefs, lb = varLower)
problem.variables.set_names(varNames)
# problem.objective.set_quadratic_coefficients([[['s%s' % x], [1]] for x in range( len(target.v) )])
problem.objective.set_quadratic(
[cplex.SparsePair(ind=[sContent[x][0]], val=[1]) for x in range( len(target.v) )]
)
一切正常到最后一次通话添加二次项。此时CPLEX会抛出以下错误CPLEX Error 1226: Array entry 13919 not ascending.
两次,忽略该命令,并继续Python代码。
我查了error,但这似乎对我没有帮助。
我确实尝试重写上面的内容,按名称添加变量,然后先下限...然后再调用set_linear
和set_quadratic
,但这也没有帮助。
我在这里缺少什么?
答案 0 :(得分:1)
如果您使用可分离的二次目标函数调用set_quadratic
,则它对应CPXXcopyqpsep。如果您使用不可分割的二次目标函数调用set_quadratic
,则它对应CPXXcopyquad。我同意您所获得的错误并不是特别有用,但如果您知道它来自可调用C库的位置,则会更有意义。
话虽如此,这是一个完整的例子,使用你的代码片段和一些虚拟输入:
import cplex
class MockTarget(object):
pass
# Dummy data for testing
numB = 3
numQ = 3
deltas = [0.1, 0.1, 0.1]
problem = cplex.Cplex()
target = MockTarget()
target.v = [1, 2, 3]
# Build the problem
varCoefs = [1]*(numB + numQ)
varLower = [0]*(numB + numQ)
varNames = [(x,"b%s"%x) for x in range( numB )]
varNames += [(len(varNames) + x,"q%s"%x) for x in range( numQ )]
varCoefs += [10]*len(deltas)
varLower += [1]*len(deltas)
varNames += [(len(varNames) + x,"delta%s"%x) for x in range( len(deltas) )]
varCoefs += [0]*len(target.v)
varLower += [0]*len(target.v)
sContent = [(len(varNames) + x,"s%s"%x) for x in range( len(target.v) )]
varNames += sContent
varCoefs += [-1]
varLower += [0]
varNames += [(len(varNames),'mu')]
problem.variables.add(obj = varCoefs, lb = varLower)
problem.variables.set_names(varNames)
# Print without quadratic terms so you can see the progression.
problem.write('test1.lp')
# Separable Q
qsepvec = []
for tpl in varNames:
if tpl in sContent:
qsepvec.append(1.0)
else:
qsepvec.append(0.0)
print qsepvec
problem.objective.set_quadratic(qsepvec)
problem.write('test2.lp')
# Inseparable Q (overwrites previous Q)
qmat = []
for tpl in varNames:
if tpl in sContent:
sp = cplex.SparsePair(ind=[tpl[0]], val=[1.0])
qmat.append(sp)
else:
sp = cplex.SparsePair(ind=[], val=[])
qmat.append(sp)
print qmat
problem.objective.set_quadratic(qmat)
problem.write('test3.lp')
我已经用长篇大论写出来,而不是使用列表推导来使它更清晰。 LP文件的内容如下:
test1.lp:
\ENCODING=ISO-8859-1
\Problem name:
Minimize
obj: b0 + b1 + b2 + q0 + q1 + q2 + 10 delta0 + 10 delta1 + 10 delta2 + 0 s0
+ 0 s1 + 0 s2 - mu
Bounds
delta0 >= 1
delta1 >= 1
delta2 >= 1
End
test2.lp
\ENCODING=ISO-8859-1
\Problem name:
Minimize
obj: b0 + b1 + b2 + q0 + q1 + q2 + 10 delta0 + 10 delta1 + 10 delta2 + 0 s0
+ 0 s1 + 0 s2 - mu + [ s0 ^2 + s1 ^2 + s2 ^2 ] / 2
Bounds
delta0 >= 1
delta1 >= 1
delta2 >= 1
End
test3.lp
\ENCODING=ISO-8859-1
\Problem name:
Minimize
obj: b0 + b1 + b2 + q0 + q1 + q2 + 10 delta0 + 10 delta1 + 10 delta2 + 0 s0
+ 0 s1 + 0 s2 - mu + [ s0 ^2 + s1 ^2 + s2 ^2 ] / 2
Bounds
delta0 >= 1
delta1 >= 1
delta2 >= 1
End
你可以看到test2.lp和test3.lp是相同的(后者会覆盖前者,但会做同样的事情)。希望这会让它更容易理解。一般来说,使用这种打印出非常简单问题的LP技术是更有用的调试技术之一。
您还应该查看CPLEX附带的python示例。例如,qpex1.py,miqpex1.py,indefqpex1.py。
答案 1 :(得分:0)
我通过首先添加二次项,设置它们的系数,然后在单独的调用中添加线性项来解决问题,见下文。
problem.objective.set_sense(problem.objective.sense.minimize)
varLower = [0]*len(target.v)
varNames = ["s%s"%x for x in range( len(target.v) )]
problem.variables.add(names=varNames, lb=varLower)
problem.objective.set_quadratic(
[[[x],[1]] for x in range( len(target.v) )]
)
varCoefs = [-1]
varLower = [0]
varNames = ['mu']
varCoefs += [1]*(numB + numQ)
varLower += [0]*(numB + numQ)
varNames += ["b%s"%x for x in range( numB )]
varNames += ["q%s"%x for x in range( numQ )]
varCoefs += [10]*len(deltas)
varLower += [1]*len(deltas)
varNames += ["delta%s"%x for x in range( len(deltas) )]
problem.variables.add(names=varNames, lb=varLower, obj=varCoefs)
但是,我仍然想知道它为什么会这样,而不是相反。