我试图在Tensorflow中启动分布式seq2seq模型。这是原始的单进程seq2seq模型。 我设置了一个集群(1ps,3个工作者),遵循tensorflow分发的教程here。
但所有工作人员都被永久停留,并输出相同的汇集日志信息:
start running session
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:244] PoolAllocator: After 7623 get requests, put_count=3649 evicted_count=1000 eviction_rate=0.274048 and unsatisfied allocation rate=0.665617
I tensorflow/core/common_runtime/gpu/pool_allocator.cc:256] Raising pool_size_limit_ from 100 to 110
这是 translate.py 的群集设置:
ps_hosts = ["9.91.9.129:2222"]
worker_hosts = ["9.91.9.130:2223", "9.91.9.130:2224", "9.91.9.130:2225"]
#worker_hosts = ["9.91.9.130:2223"]
cluster = tf.train.ClusterSpec({"ps":ps_hosts, "worker":worker_hosts})
server = tf.train.Server(cluster,
job_name=FLAGS.job_name,
task_index=FLAGS.task_index)
if FLAGS.job_name == "ps":
server.join()
elif FLAGS.job_name == "worker":
# Worker server
is_chief = (FLAGS.task_index == 0)
gpu_num = FLAGS.task_index
with tf.Graph().as_default():
with tf.device(tf.train.replica_device_setter(cluster=cluster,
worker_device="/job:worker/task:%d/gpu:%d" % (FLAGS.task_index, gpu_num))):
我使用 tf.train.SyncReplicasOptimizer 来实现SyncTraining。
这是我的 seq2seq_model.py 的一部分:
# Gradients and SGD update operation for training the model.
params = tf.trainable_variables()
if not forward_only:
self.gradient_norms = []
self.updates = []
opt = tf.train.GradientDescentOptimizer(self.learning_rate)
opt = tf.train.SyncReplicasOptimizer(
opt,
replicas_to_aggregate=num_workers,
replica_id=task_index,
total_num_replicas=num_workers)
for b in xrange(len(buckets)):
gradients = tf.gradients(self.losses[b], params)
clipped_gradients, norm = tf.clip_by_global_norm(gradients,
max_gradient_norm)
self.gradient_norms.append(norm)
self.updates.append(opt.apply_gradients(
zip(clipped_gradients, params), global_step=self.global_step))
self.init_tokens_op = opt.get_init_tokens_op
self.chief_queue_runners = [opt.get_chief_queue_runner]
self.saver = tf.train.Saver(tf.all_variables())
这是我完整的python代码[here]
答案 0 :(得分:1)
似乎Tensorflow人员尚未准备好正确分享在群集上运行代码的体验。到目前为止,只能在源代码中找到全面的文档。
根据SyncReplicasOptimizer.py的版本0.11,你必须在SyncReplicasOptimizer构建之后运行它:
init_token_op = optimizer.get_init_tokens_op()
chief_queue_runner = optimizer.get_chief_queue_runner()
然后在使用Supervisor构建会话后运行此命令:
if is_chief:
sess.run(init_token_op)
sv.start_queue_runners(sess, [chief_queue_runner])
使用0.12引入的SyncReplicasOptimizerV2此代码可能不够,请参阅您使用的版本的源代码。