给定两个大型数据帧,是否有任何简洁有效的代码(避免直接使用任何for loop
),这使我能够获得这两个数据帧的补充?
对我来说最直接的方法是计算union-intersection
,如下面的天真示例所示,但我不知道如何以pandas
或{{1}的优雅语言实现此功能}
np
感谢任何评论和回答
答案 0 :(得分:6)
从这开始:
df1= pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
'key2': ['K0', 'K1', 'K0', 'K1'],
'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3']})
df2= pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
'key2': ['K0', 'K0', 'K0', 'K0'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']})
intersection = pd.merge(df1, df2, how='inner',on=['key1', 'key2'])
union = pd.merge(df1, df2, how='outer',on=['key1', 'key2'])
print union
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A1 B1 K0 K1 NaN NaN
2 A2 B2 K1 K0 C1 D1
3 A2 B2 K1 K0 C2 D2
4 A3 B3 K2 K1 NaN NaN
5 NaN NaN K2 K0 C3 D3
打印交叉点
A B key1 key2 C D
0 A0 B0 K0 K0 C0 D0
1 A2 B2 K1 K0 C1 D1
2 A2 B2 K1 K0 C2 D2
union-intersection试试这个:
union[union.isnull().any(axis=1)]
A B key1 key2 C D
1 A1 B1 K0 K1 NaN NaN
4 A3 B3 K2 K1 NaN NaN
5 NaN NaN K2 K0 C3 D3