在处理熊猫时,我试图打印物体运动和角度状态的分析。我这样做的代码如下:
def displayData(tList, xList, zList, dxList, dzList, thetaList, dthetaList, Q_sList):
states = pd.DataFrame({ 't' : tList,
'x' : xList,
'z' : zList,
'dx' : dxList,
'dz' : dzList,
'theta' : thetaList,
'dtheta' : dthetaList,
'Q_s' : Q_sList})
print states[['t', 'x', 'z', 'dx', 'dz', 'theta', 'dtheta', 'Q_s']]
但是,当要求打印数据时,输出会将列分解超出某个点:
t x z dx dz theta \
0 0.000 -500.000000 -100.000000 100.000000 -0.000000 0.000000
1 0.005 -499.500000 -100.000000 99.999983 0.057692 -0.000577
2 0.010 -499.000000 -99.999712 99.999933 0.115329 -0.001153
... ... ... ... ... ... ...
dtheta Q_s
0 -0.115385 -0.038462
1 -0.115274 -0.038425
2 -0.115163 -0.038388
... ... ...
由于我当时有数千个州要打印,我希望熊猫不要像这样破坏表格,让我分析一个给定的状态,而不必滚动去拾取剩余的两个数据字段。有什么方法可以定义要打印的特定尺寸,以免发生这种情况吗?
答案 0 :(得分:1)
在这种情况下,可以使用两个有用的settings:pd.options.display.width
和pd.options.display.expand_frame_repr
这是一个小型演示:
In [118]: pd.options.display.expand_frame_repr
Out[118]: True
In [119]: pd.options.display.width = 50
In [120]: df
Out[120]:
t x z dx \
0 0.000 -500.0 -100.000000 100.000000
1 0.005 -499.5 -100.000000 99.999983
2 0.010 -499.0 -99.999712 99.999933
dz theta dtheta Q_s
0 -0.000000 0.000000 -0.115385 -0.038462
1 0.057692 -0.000577 -0.115274 -0.038425
2 0.115329 -0.001153 -0.115163 -0.038388
In [121]: pd.options.display.width = 100
In [122]: df
Out[122]:
t x z dx dz theta dtheta Q_s
0 0.000 -500.0 -100.000000 100.000000 -0.000000 0.000000 -0.115385 -0.038462
1 0.005 -499.5 -100.000000 99.999983 0.057692 -0.000577 -0.115274 -0.038425
2 0.010 -499.0 -99.999712 99.999933 0.115329 -0.001153 -0.115163 -0.038388
In [131]: pd.options.display.width = 40
In [132]: df
Out[132]:
t x z \
0 0.000 -500.0 -100.000000
1 0.005 -499.5 -100.000000
2 0.010 -499.0 -99.999712
dx dz theta \
0 100.000000 -0.000000 0.000000
1 99.999983 0.057692 -0.000577
2 99.999933 0.115329 -0.001153
dtheta Q_s
0 -0.115385 -0.038462
1 -0.115274 -0.038425
2 -0.115163 -0.038388
In [125]: pd.options.display.expand_frame_repr = False
In [126]: df
Out[126]:
t x z dx dz theta dtheta Q_s
0 0.000 -500.0 -100.000000 100.000000 -0.000000 0.000000 -0.115385 -0.038462
1 0.005 -499.5 -100.000000 99.999983 0.057692 -0.000577 -0.115274 -0.038425
2 0.010 -499.0 -99.999712 99.999933 0.115329 -0.001153 -0.115163 -0.038388
In [127]: pd.options.display.width
Out[127]: 30
或者,您可以使用set_options()方法
以下是所有diplay
选项的列表:
In [128]: pd.options.display.
pd.options.display.chop_threshold pd.options.display.latex pd.options.display.mpl_style
pd.options.display.colheader_justify pd.options.display.line_width pd.options.display.multi_sparse
pd.options.display.column_space pd.options.display.max_categories pd.options.display.notebook_repr_html
pd.options.display.date_dayfirst pd.options.display.max_columns pd.options.display.pprint_nest_depth
pd.options.display.date_yearfirst pd.options.display.max_colwidth pd.options.display.precision
pd.options.display.encoding pd.options.display.max_info_columns pd.options.display.show_dimensions
pd.options.display.expand_frame_repr pd.options.display.max_info_rows pd.options.display.unicode
pd.options.display.float_format pd.options.display.max_rows pd.options.display.width
pd.options.display.height pd.options.display.max_seq_items
pd.options.display.large_repr pd.options.display.memory_usage