我在python pandas dataframe对象中有一个时间序列,我想创建一个基于索引的组,但我想要重叠的组,即组不是不同的。 header_sec是索引列。 每组包括一个2秒的窗口。 输入dataFrame
header_sec
1 17004 days 22:17:13
2 17004 days 22:17:13
3 17004 days 22:17:13
4 17004 days 22:17:13
5 17004 days 22:17:14
6 17004 days 22:17:14
7 17004 days 22:17:14
8 17004 days 22:17:14
9 17004 days 22:17:15
10 17004 days 22:17:15
11 17004 days 22:17:15
12 17004 days 22:17:15
13 17004 days 22:17:16
14 17004 days 22:17:16
15 17004 days 22:17:16
16 17004 days 22:17:16
17 17004 days 22:17:17
18 17004 days 22:17:17
19 17004 days 22:17:17
20 17004 days 22:17:17
我的第一组应该
1 17004 days 22:17:13
2 17004 days 22:17:13
3 17004 days 22:17:13
4 17004 days 22:17:13
5 17004 days 22:17:14
6 17004 days 22:17:14
7 17004 days 22:17:14
8 17004 days 22:17:14
第二组从上一个索引开始,占据前一秒的1/2记录。
7 17004 days 22:17:14
8 17004 days 22:17:14
9 17004 days 22:17:15
10 17004 days 22:17:15
11 17004 days 22:17:15
12 17004 days 22:17:15
13 17004 days 22:17:16
14 17004 days 22:17:16
第三组.....
13 17004 days 22:17:16
14 17004 days 22:17:16
15 17004 days 22:17:16
16 17004 days 22:17:16
17 17004 days 22:17:17
18 17004 days 22:17:17
19 17004 days 22:17:17
20 17004 days 22:17:17
如果我在索引上进行分组,
dfgroup=df.groupby(df.index)
这给了每秒一组。合并这些组的最佳方法是什么?
答案 0 :(得分:1)
这是一种技术:
import numpy as np # if you have not already done this
grouped = df.groupby(df.index)
for name, group in grouped:
try:
prev_sec = df.loc[(name - pd.to_timedelta(1, unit='s')), :]
except KeyError:
prev_sec = pd.DataFrame(columns=group.columns)
try:
next_sec = df.loc[(name + pd.to_timedelta(1, unit='s')), :]
except KeyError:
next_sec = pd.DataFrame(columns=group.columns)
Pn = 2 # replace this with int(len(prev_sec)/2) to get half rows from previous second
Nn = 2 # replace this with int(len(next_sec)/2) to get half rows from next second
group = pd.concat([prev_sec.iloc[-Pn:,:], group, next_sec.iloc[:Nn,:]])
# Replace the below lines with your operations
print(name, group)