线性回归r比较多个观察与å•ä¸ªè§‚察

时间:2016-08-08 02:40:43

标签: r regression lm

æ ¹æ®æˆ‘question的答案,我应该得到相åŒçš„拦截值和2个以下模型的回归系数。但他们ä¸ä¸€æ ·ã€‚到底是怎么回事?

我的代ç æœ‰é—®é¢˜å—?或者原æ¥çš„答案是错的?

#linear regression average qty per price point vs all quantities

x1=rnorm(30,20,1);y1=rep(3,30)
x2=rnorm(30,17,1.5);y2=rep(4,30)
x3=rnorm(30,12,2);y3=rep(4.5,30)
x4=rnorm(30,6,3);y4=rep(5.5,30)
x=c(x1,x2,x3,x4)
y=c(y1,y2,y3,y4)
plot(y,x)
cor(y,x)
fit=lm(x~y)
attributes(fit)
summary(fit)

xdum=c(20,17,12,6)
ydum=c(3,4,4.5,5.5)
plot(ydum,xdum)
cor(ydum,xdum)
fit1=lm(xdum~ydum)
attributes(fit1)
summary(fit1)


> summary(fit)

Call:
lm(formula = x ~ y)

Residuals:
    Min      1Q  Median      3Q     Max 
-8.3572 -1.6069 -0.1007  2.0222  6.4904 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  40.0952     1.1570   34.65   <2e-16 ***
y            -6.1932     0.2663  -23.25   <2e-16 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 2.63 on 118 degrees of freedom
Multiple R-squared:  0.8209,    Adjusted R-squared:  0.8194 
F-statistic: 540.8 on 1 and 118 DF,  p-value: < 2.2e-16

> summary(fit1)

Call:
lm(formula = xdum ~ ydum)

Residuals:
      1       2       3       4 
-0.9615  1.8077 -0.3077 -0.5385 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)  38.2692     3.6456  10.497  0.00895 **
ydum         -5.7692     0.8391  -6.875  0.02051 * 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.513 on 2 degrees of freedom
Multiple R-squared:  0.9594,    Adjusted R-squared:  0.9391 
F-statistic: 47.27 on 1 and 2 DF,  p-value: 0.02051

2 个答案:

答案 0 :(得分:4)

您没有以å¯æ¯”较的方å¼è®¡ç®—xdumå’Œydum,因为rnormåªä¼šæŽ¥è¿‘您指定的平å‡å€¼ï¼Œå°¤å…¶æ˜¯å½“您åªæŠ½æ ·30个案例时。但这很容易解决:

coef(fit)
#(Intercept)           y 
#  39.618472   -6.128739 

xdum <- c(mean(x1),mean(x2),mean(x3),mean(x4))
ydum <- c(mean(y1),mean(y2),mean(y3),mean(y4))
coef(lm(xdum~ydum))
#(Intercept)        ydum 
#  39.618472   -6.128739 

答案 1 :(得分:2)

ç†è®ºä¸Šï¼Œå¦‚果(并且仅当)å‰ä¸€æ¨¡åž‹çš„å‡å€¼ç­‰äºŽåŽä¸€æ¨¡åž‹ä¸­çš„点,它们应该是相åŒçš„。

在您的型å·ä¸­å¹¶éžå¦‚此,因此结果略有ä¸åŒã€‚例如x1çš„å¹³å‡å€¼ï¼š

x1=rnorm(30,20,1)
mean(x1)
  

20.08353

点版本为20。

与其他rnorm样本存在类似的微å°å·®å¼‚:

> mean(x2)
[1] 17.0451
> mean(x3)
[1] 11.72307
> mean(x4)
[1] 5.913274

并ä¸æ˜¯è¯´è¿™çœŸçš„很é‡è¦ï¼Œä½†ä»…仅是FYI标准命å法是Y是因å˜é‡è€ŒX是自å˜é‡ï¼Œä½ å¯ä»¥é€†è½¬ã€‚当然没有区别,但你知é“。