对于dtype
中的每一行,在相同DataFrame
的列中计算不同值的最快方式(在理智的pythonicity范围内)是什么?
详细信息:按主题(按行)按天(按列)显示DataFrame
分类结果,类似于以下内容生成的内容。
import numpy as np
import pandas as pd
def genSampleData(custCount, dayCount, discreteChoices):
"""generate example dataset"""
np.random.seed(123)
return pd.concat([
pd.DataFrame({'custId':np.array(range(1,int(custCount)+1))}),
pd.DataFrame(
columns = np.array(['day%d' % x for x in range(1,int(dayCount)+1)]),
data = np.random.choice(a=np.array(discreteChoices),
size=(int(custCount), int(dayCount)))
)], axis=1)
例如,如果数据集告诉我们每个顾客在每次访问商店时订购了哪种饮料,我想知道每位顾客的不同饮料数量。
# notional discrete choice outcome
drinkOptions, drinkIndex = np.unique(['coffee','tea','juice','soda','water'],
return_inverse=True)
# integer-coded discrete choice outcomes
d = genSampleData(2,3, drinkIndex)
d
# custId day1 day2 day3
#0 1 1 4 1
#1 2 3 2 1
# Count distinct choices per subject -- this is what I want to do efficiently on larger DF
d.iloc[:,1:].apply(lambda x: len(np.unique(x)), axis=1)
#0 2
#1 3
# Note: I have coded the choices as `int` rather than `str` to speed up comparisons.
# To reconstruct the choice names, we could do:
# d.iloc[:,1:] = drinkOptions[d.iloc[:,1:]]
我尝试了什么:此用例中的数据集将包含比天数更多的主题(下面的示例testDf
),因此我尝试找到最有效的行操作:
testDf = genSampleData(100000,3, drinkIndex)
#---- Original attempts ----
%timeit -n20 testDf.iloc[:,1:].apply(lambda x: x.nunique(), axis=1)
# I didn't wait for this to finish -- something more than 5 seconds per loop
%timeit -n20 testDf.iloc[:,1:].apply(lambda x: len(x.unique()), axis=1)
# Also too slow
%timeit -n20 testDf.iloc[:,1:].apply(lambda x: len(np.unique(x)), axis=1)
#20 loops, best of 3: 2.07 s per loop
为了改进我原来的尝试,我们注意到pandas.DataFrame.apply()接受了这个论点:
如果
raw=True
传递的函数将接收ndarray对象。 如果您只是应用NumPy减少功能,这将实现 更好的表现
这确实将运行时间缩短了一半以上:
%timeit -n20 testDf.iloc[:,1:].apply(lambda x: len(np.unique(x)), axis=1, raw=True)
#20 loops, best of 3: 721 ms per loop *best so far*
我很惊讶一个纯粹的numpy解决方案,它看起来与上面的raw=True
相当,实际上有点慢:
%timeit -n20 np.apply_along_axis(lambda x: len(np.unique(x)), axis=1, arr = testDf.iloc[:,1:].values)
#20 loops, best of 3: 1.04 s per loop
最后,我还尝试调换数据以执行column-wise count distinct,我认为这可能更有效(至少对DataFrame.apply()
而言,但似乎没有意义差。
%timeit -n20 testDf.iloc[:,1:].T.apply(lambda x: len(np.unique(x)), raw=True)
#20 loops, best of 3: 712 ms per loop *best so far*
%timeit -n20 np.apply_along_axis(lambda x: len(np.unique(x)), axis=0, arr = testDf.iloc[:,1:].values.T)
# 20 loops, best of 3: 1.13 s per loop
到目前为止,我最好的解决方案是df.apply
len(np.unique())
的奇怪组合,但我还应该尝试什么?
答案 0 :(得分:3)
我的理解是,nunique针对大型系列进行了优化。在这里,你只有3天。将每列与其他列进行比较似乎更快:
testDf = genSampleData(100000,3, drinkIndex)
days = testDf.columns[1:]
%timeit testDf.iloc[:, 1:].stack().groupby(level=0).nunique()
10 loops, best of 3: 46.8 ms per loop
%timeit pd.melt(testDf, id_vars ='custId').groupby('custId').value.nunique()
10 loops, best of 3: 47.6 ms per loop
%%timeit
testDf['nunique'] = 1
for col1, col2 in zip(days, days[1:]):
testDf['nunique'] += ~((testDf[[col2]].values == testDf.ix[:, 'day1':col1].values)).any(axis=1)
100 loops, best of 3: 3.83 ms per loop
当你添加更多列时,它会失去优势。对于不同数量的列(相同的顺序:stack().groupby()
,pd.melt().groupby()
和循环):
10 columns: 143ms, 161ms, 30.9ms
50 columns: 749ms, 968ms, 635ms
100 columns: 1.52s, 2.11s, 2.33s
答案 1 :(得分:2)
pandas.melt
和DataFrame.groupby
的 groupby.SeriesGroupBy.nunique
似乎打破了其他解决方案:
%timeit -n20 pd.melt(testDf, id_vars ='custId').groupby('custId').value.nunique()
#20 loops, best of 3: 67.3 ms per loop
答案 2 :(得分:1)