我最近一直在做一个基于java.net.ConnectException: Connection timed out: connect
的Udacity深度学习课程。我有一个简单的TensorFlow
程序,准确率约为92%:
MNIST
我的下一个作业是
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x, W) + b)
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
我对此有心理障碍。目前我有一个784 x 10的权重矩阵和一个10元素的长偏置矢量。我不明白如何将生成的10个元素向量从Turn the logistic regression example with SGD into a 1-hidden layer neural network with rectified linear units nn.relu() and 1024 hidden nodes
连接到1024 WX + Bias
s。
如果有人能向我解释这一点,我将非常感激。
答案 0 :(得分:18)
现在你有类似的东西
你需要这样的东西
(此图缺少ReLU层,后面是+ b1)