我有一种将二进制有线格式转换为人类可读格式的方法,但我无法做到这个
的反转import tensorflow as tf
from tensorflow.python.platform import gfile
def converter(filename):
with gfile.FastGFile(filename,'rb') as f:
graph_def = tf.GraphDef()
graph_def.ParseFromString(f.read())
tf.import_graph_def(graph_def, name='')
tf.train.write_graph(graph_def, 'pbtxt/', 'protobuf.pb', as_text=True)
return
我只需为此输入文件名即可。但在做相反的事情我得到了
File "pb_to_pbtxt.py", line 16, in <module>
converter('protobuf.pb') # here you can write the name of the file to be converted
File "pb_to_pbtxt.py", line 11, in converter
graph_def.ParseFromString(f.read())
File "/usr/local/lib/python2.7/dist-packages/google/protobuf/message.py", line 185, in ParseFromString
self.MergeFromString(serialized)
File "/usr/local/lib/python2.7/dist-packages/google/protobuf/internal/python_message.py", line 1008, in MergeFromString
if self._InternalParse(serialized, 0, length) != length:
File "/usr/local/lib/python2.7/dist-packages/google/protobuf/internal/python_message.py", line 1034, in InternalParse
new_pos = local_SkipField(buffer, new_pos, end, tag_bytes)
File "/usr/local/lib/python2.7/dist-packages/google/protobuf/internal/decoder.py", line 868, in SkipField
return WIRETYPE_TO_SKIPPER[wire_type](buffer, pos, end)
File "/usr/local/lib/python2.7/dist-packages/google/protobuf/internal/decoder.py", line 838, in _RaiseInvalidWireType
raise _DecodeError('Tag had invalid wire type.')
答案 0 :(得分:5)
您可以使用google.protobuf.text_format
模块执行反向翻译:
import tensorflow as tf
from google.protobuf import text_format
def convert_pbtxt_to_graphdef(filename):
"""Returns a `tf.GraphDef` proto representing the data in the given pbtxt file.
Args:
filename: The name of a file containing a GraphDef pbtxt (text-formatted
`tf.GraphDef` protocol buffer data).
Returns:
A `tf.GraphDef` protocol buffer.
"""
with tf.gfile.FastGFile(filename, 'r') as f:
graph_def = tf.GraphDef()
file_content = f.read()
# Merges the human-readable string in `file_content` into `graph_def`.
text_format.Merge(file_content, graph_def)
return graph_def
答案 1 :(得分:2)
您可以使用tf.Graph.as_graph_def()
然后使用Protobuf的SerializeToString()
,如下所示:
proto_graph = # obtained by calling tf.Graph.as_graph_def()
with open("my_graph.bin", "wb") as f:
f.write(proto_graph.SerializeToString())
如果您只想编写文件而不关心编码,也可以使用tf.train.write_graph()
v = tf.Variable(0, name='my_variable')
sess = tf.Session()
tf.train.write_graph(sess.graph_def, '/tmp/my-model', 'train.pbtxt')
注意:经过TF 0.10测试,不确定早期版本。