用于回归的张量流深度神经网络总是在一批中预测相同的结果

时间:2016-07-15 15:14:09

标签: python neural-network regression tensorflow

我使用张量流来实现一个简单的多层感知器用于回归。代码是从标准的mnist分类器修改的,我只将输出成本更改为MSE(使用tf.reduce_mean(tf.square(pred-y))),以及一些输入,输出大小设置。但是,如果我使用回归训练网络,在几个时期之后,输出批次完全相同。例如:

target: 48.129, estimated: 42.634
target: 46.590, estimated: 42.634
target: 34.209, estimated: 42.634
target: 69.677, estimated: 42.634
......

我尝试了不同的批量大小,不同的初始化,使用sklearn.preprocessing.scale进行输入规范化(我的输入范围非常不同)。但是,它们都没有奏效。我还尝试了Tensorflow(Deep Neural Network Regression with Boston Data)中的一个sklearn示例。但是我在第40行得到了另一个错误:

'模块'对象没有属性" infer_real_valued_columns_from_input'

任何人都有关于问题所在的线索?谢谢

我的代码如下所示,可能有点长,但非常简单:

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import tensorflow as tf
from tensorflow.contrib import learn
import matplotlib.pyplot as plt

from sklearn.pipeline import Pipeline
from sklearn import datasets, linear_model
from sklearn import cross_validation
import numpy as np

boston = learn.datasets.load_dataset('boston')
x, y = boston.data, boston.target
X_train, X_test, Y_train, Y_test = cross_validation.train_test_split(
x, y, test_size=0.2, random_state=42)

total_len = X_train.shape[0]

# Parameters
learning_rate = 0.001
training_epochs = 500
batch_size = 10
display_step = 1
dropout_rate = 0.9
# Network Parameters
n_hidden_1 = 32 # 1st layer number of features
n_hidden_2 = 200 # 2nd layer number of features
n_hidden_3 = 200
n_hidden_4 = 256
n_input = X_train.shape[1]
n_classes = 1

# tf Graph input
x = tf.placeholder("float", [None, 13])
y = tf.placeholder("float", [None])

# Create model
def multilayer_perceptron(x, weights, biases):
    # Hidden layer with RELU activation
    layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
    layer_1 = tf.nn.relu(layer_1)

    # Hidden layer with RELU activation
    layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
    layer_2 = tf.nn.relu(layer_2)

    # Hidden layer with RELU activation
    layer_3 = tf.add(tf.matmul(layer_2, weights['h3']), biases['b3'])
    layer_3 = tf.nn.relu(layer_3)

    # Hidden layer with RELU activation
    layer_4 = tf.add(tf.matmul(layer_3, weights['h4']), biases['b4'])
    layer_4 = tf.nn.relu(layer_4)

    # Output layer with linear activation
    out_layer = tf.matmul(layer_4, weights['out']) + biases['out']
    return out_layer

# Store layers weight & bias
weights = {
    'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], 0, 0.1)),
    'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], 0, 0.1)),
    'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], 0, 0.1)),
    'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], 0, 0.1)),
    'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], 0, 0.1))
}
biases = {
    'b1': tf.Variable(tf.random_normal([n_hidden_1], 0, 0.1)),
    'b2': tf.Variable(tf.random_normal([n_hidden_2], 0, 0.1)),
    'b3': tf.Variable(tf.random_normal([n_hidden_3], 0, 0.1)),
    'b4': tf.Variable(tf.random_normal([n_hidden_4], 0, 0.1)),
    'out': tf.Variable(tf.random_normal([n_classes], 0, 0.1))
}

# Construct model
pred = multilayer_perceptron(x, weights, biases)

# Define loss and optimizer
cost = tf.reduce_mean(tf.square(pred-y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)

# Launch the graph
with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())

    # Training cycle
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(total_len/batch_size)
        # Loop over all batches
        for i in range(total_batch-1):
            batch_x = X_train[i*batch_size:(i+1)*batch_size]
            batch_y = Y_train[i*batch_size:(i+1)*batch_size]
            # Run optimization op (backprop) and cost op (to get loss value)
            _, c, p = sess.run([optimizer, cost, pred], feed_dict={x: batch_x,
                                                          y: batch_y})
            # Compute average loss
            avg_cost += c / total_batch

        # sample prediction
        label_value = batch_y
        estimate = p
        err = label_value-estimate
        print ("num batch:", total_batch)

        # Display logs per epoch step
        if epoch % display_step == 0:
            print ("Epoch:", '%04d' % (epoch+1), "cost=", \
                "{:.9f}".format(avg_cost))
            print ("[*]----------------------------")
            for i in xrange(3):
                print ("label value:", label_value[i], \
                    "estimated value:", estimate[i])
            print ("[*]============================")

    print ("Optimization Finished!")

    # Test model
    correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
    # Calculate accuracy
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print ("Accuracy:", accuracy.eval({x: X_test, y: Y_test}))

2 个答案:

答案 0 :(得分:26)

简短回答

使用pred移植tf.transpose(pred)向量。

更长的答案

问题在于pred(预测)和y(标签)的形状不同:一个是行向量,另一个是列向量。显然,当你对它们应用元素操作时,你会得到一个矩阵,这不是你想要的。

解决方案是使用tf.transpose()转置预测向量以获得适当的向量,从而获得适当的损失函数。实际上,如果你在你的例子中将批量大小设置为1,你会发现即使没有修复它也能正常工作,因为转换1x1向量是一个无操作。

我将此修复程序应用于您的示例代码并观察到以下行为。在修复之前:

Epoch: 0245 cost= 84.743440580
[*]----------------------------
label value: 23 estimated value: [ 27.47437096]
label value: 50 estimated value: [ 24.71126747]
label value: 22 estimated value: [ 23.87785912]

在同一时间点修复之后:

Epoch: 0245 cost= 4.181439120
[*]----------------------------
label value: 23 estimated value: [ 21.64333534]
label value: 50 estimated value: [ 48.76105118]
label value: 22 estimated value: [ 24.27996063]

你会发现成本要低得多,并且它实际上正确地学到了50。你必须对学习率进行一些微调,以便改善你的学习成绩。

答案 1 :(得分:1)

您的数据集加载或索引实现可能存在问题。如果您仅将费用修改为MSE,请确保正确更新predy,并且您没有使用其他图表操作覆盖它们。

帮助调试的另一件事是预测实际的回归输出。如果您发布了更多代码,那么我们也可以看到您的特定数据加载实现等等。