我有两个kafka流包含两个并行操作的结果,我需要一种方法来组合两个流,以便我可以在单个spark变换中处理结果。这可能吗? (如下图所示)
Stream 1 {id:1,result1:True}
Stream 2 {id:1,result2:False}
JOIN(Stream 1, Stream 2, On "id") -> Output Stream {id:1,result1:True,result2:False}
当前没有工作的代码:
kvs1 = KafkaUtils.createStream(sparkstreamingcontext, ZOOKEEPER, NAME+"_stream", {"test_join_1": 1})
kvs2 = KafkaUtils.createStream(sparkstreamingcontext, ZOOKEEPER, NAME+"_stream", {"test_join_2": 1})
messages_RDDstream1 = kvs1.map(lambda x: x[1])
messages_RDDstream2 = kvs2.map(lambda x: x[1])
messages_RDDstream_Final = messages_RDDstream1.join(messages_RDDstream2)
当我将两个示例jsons传递给具有相同ID字段的每个Kafka队列时,我的最终RDD流中没有返回任何内容。我成像我错过了将我的Kafka JSON字符串消息转换为元组的阶段吗?
我也尝试了以下内容:
kvs1.map(lambda (key, value): json.loads(value))
和
kvs1.map(lambda x: json.loads(x))
无济于事
干杯
亚当
答案 0 :(得分:2)
对Spark文档的简单查找会给你答案..
您可以使用join
操作。
加入(otherStream,[numTasks]):
当调用(K,V)和(K,W)对的两个DStream时,返回一个新的DStream(K,(V,W))对,每个键的所有元素对。
例如:val streamJoined = stream1.join(stream2)
答案 1 :(得分:1)
使用键值对DStreams的join()
方法可以完成所需的操作:
// Test data
val input1 = List((1, true), (2, false), (3, false), (4, true), (5, false))
val input2 = List((1, false), (2, false), (3, true), (4, true), (5, true))
val input1RDD = sc.parallelize(input1)
val input2RDD = sc.parallelize(input2)
import org.apache.spark.streaming.{Seconds, StreamingContext}
val streamingContext = new StreamingContext(sc, Seconds(3))
// Creates a DStream from the test data
import scala.collection.mutable
val input1DStream = streamingContext.queueStream[(Int, Boolean)](mutable.Queue(input1RDD))
val input2DStream = streamingContext.queueStream[(Int, Boolean)](mutable.Queue(input2RDD))
// Join the two streams together by merging them into a single dstream
val joinedDStream = input1DStream.join(input2DStream)
// Print the result
joinedDStream.print()
// Start the context, time out after one batch, and then stop it
streamingContext.start()
streamingContext.awaitTerminationOrTimeout(5000)
streamingContext.stop()
结果:
-------------------------------------------
Time: 1468313607000 ms
-------------------------------------------
(4,(true,true))
(2,(false,false))
(1,(true,false))
(3,(false,true))
(5,(false,true))
答案 2 :(得分:0)
我使用Spark java加入了两个queueStream。请看下面的代码。
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.Queue;
import org.apache.commons.lang3.tuple.Pair;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.api.java.JavaInputDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;
import com.google.common.collect.Queues;
import scala.Tuple2;
public class SparkQueueStreamJoin {
public static void main(String[] args) throws InterruptedException {
// Test data
List<Pair<Integer, Boolean>> input1 = Arrays.asList(Pair.of(1,true), Pair.of(2,false), Pair.of(3,false), Pair.of(4,true), Pair.of(5,false));
List<Pair<Integer, Boolean>> input2 = Arrays.asList(Pair.of(1,false), Pair.of(2,false), Pair.of(3,true), Pair.of(4,true), Pair.of(5,true));
SparkConf conf = new SparkConf().setMaster("local[*]").setAppName("SparkQueueStreamJoin ")
.set("spark.testing.memory", "2147480000");
//System.setProperty("hadoop.home.dir", "C:/H`enter code here`adoop/hadoop-2.7.1");
JavaSparkContext sc = new JavaSparkContext(conf);
JavaRDD<Pair<Integer, Boolean>> input1RDD = sc.parallelize(input1);
JavaRDD<Pair<Integer, Boolean>> input2RDD = sc.parallelize(input2);
JavaStreamingContext streamingContext = new JavaStreamingContext(sc, Durations.seconds(3));
Queue<JavaRDD<Pair<Integer, Boolean>>> queue1RDD = Queues.newLinkedBlockingQueue();
queue1RDD.add(input1RDD);
Queue<JavaRDD<Pair<Integer, Boolean>>> queue2RDD = Queues.newLinkedBlockingQueue();
queue2RDD.add(input2RDD);
// Creates a DStream from the test data
JavaInputDStream<Pair<Integer, Boolean>> input1DStream = streamingContext.queueStream(queue1RDD, false);
JavaInputDStream<Pair<Integer, Boolean>> input2DStream = streamingContext.queueStream(queue2RDD, false);
JavaPairDStream<Integer, Boolean> pair1DStream = input1DStream.mapToPair(new PairFunction<Pair<Integer, Boolean>, Integer, Boolean>() {
@Override
public Tuple2<Integer, Boolean> call(Pair<Integer, Boolean> rawEvent) throws Exception {
return new Tuple2<>(rawEvent.getKey(), rawEvent.getValue());
}
});
JavaPairDStream<Integer, Boolean> pair2DStream = input2DStream.mapToPair(new PairFunction<Pair<Integer, Boolean>, Integer, Boolean>() {
@Override
public Tuple2<Integer, Boolean> call(Pair<Integer, Boolean> rawEvent) throws Exception {
return new Tuple2<>(rawEvent.getKey(), rawEvent.getValue());
}
});
// Union two streams together by merging them into a single dstream
//JavaDStream<Pair<Integer, Boolean>> joinedDStream = input1DStream.union(input2DStream);
// Join the two streams together by merging them into a single dstream
JavaPairDStream<Integer, Tuple2<Boolean, Boolean>> joinedDStream = pair1DStream.join(pair2DStream);
// Print the result
joinedDStream.print();
// Start the context, time out after one batch, and then stop it
streamingContext.start();
streamingContext.awaitTerminationOrTimeout(5000);
streamingContext.stop();
}
}
输出:
-------------------------------------------
Time: 1511444352000 ms
-------------------------------------------
(1,(true,false))
(2,(false,false))
(3,(false,true))
(4,(true,true))
(5,(false,true))