我有2个data.frames
> abc
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13
1 chr1 812640 813470 Rank_108039 5 . 2.51728 2.10797 0.59423|chr1 803450 812182 NR_027055 FAM41C
2 chr1 842313 842638 Rank_154173 3 . 2.34097 1.79807 0.35120|chr1 852197 855072 NR_026874 LOC100130417
3 chr1 843404 843769 Rank_154173 3 . 2.34097 1.79807 0.35120|chr1 852197 855072 NR_026874 LOC100130417
4 chr1 849172 849318 Rank_180753 2 . 2.19849 1.65655 0.25215|chr1 852197 855072 NR_026874 LOC100130417
5 chr1 761091 763246 Rank_11761 227 . 10.29544 24.83220 22.77738|chr1 763177 794826 NR_047525 LINC01128
> cde
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13
1 chr1 28565 28699 Rank_31267 1 . 2.17937 1.99334 0.18208|chr1 14361 29370 NR_024540 WASH7P
2 chr1 712911 714068 Rank_12239 208 . 8.78112 22.93857 20.88265|chr1 700244 714068 NR_033908 LOC100288069
3 chr1 761091 762902 Rank_11761 227 . 10.29544 24.83220 22.77738|chr1 761585 762902 NR_024321 LINC00115
4 chr1 761091 763246 Rank_11761 227 . 10.29544 24.83220 22.77738|chr1 763177 794826 NR_047525 LINC01128
我想创建一个新的数据框,其中包含abc$V12 == cde$V12
和abc$V13 == cde$V13
的所有行
我尝试了很多可能的选项(子集,dplyr的过滤器,sqldf的SELECT),但我无法做到。
根据这些条件,我的最终data.frame将只具有abc的row5,因为它满足所需的条件。所以输出将是:
> final.df
5 chr1 761091 763246 Rank_11761 227 . 10.29544 24.83220 22.77738|chr1 763177 794826 NR_047525 LINC01128
以下是data.frames的输入:
> dput(abc)
structure(list(V1 = structure(c(1L, 1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"),
V2 = c(812640L, 842313L, 843404L, 849172L, 761091L), V3 = c(813470L,
842638L, 843769L, 849318L, 763246L), V4 = structure(c(1L,
3L, 3L, 4L, 2L), .Label = c("Rank_108039", "Rank_11761",
"Rank_154173", "Rank_180753"), class = "factor"), V5 = c(5L,
3L, 3L, 2L, 227L), V6 = structure(c(1L, 1L, 1L, 1L, 1L), .Label = ".", class = "factor"),
V7 = c(2.51728, 2.34097, 2.34097, 2.19849, 10.29544), V8 = c(2.10797,
1.79807, 1.79807, 1.65655, 24.8322), V9 = structure(c(3L,
2L, 2L, 1L, 4L), .Label = c("0.25215|chr1", "0.35120|chr1",
"0.59423|chr1", "22.77738|chr1"), class = "factor"), V10 = c(803450L,
852197L, 852197L, 852197L, 763177L), V11 = c(812182L, 855072L,
855072L, 855072L, 794826L), V12 = structure(c(2L, 1L, 1L,
1L, 3L), .Label = c("NR_026874", "NR_027055", "NR_047525"
), class = "factor"), V13 = structure(c(1L, 3L, 3L, 3L, 2L
), .Label = c("FAM41C", "LINC01128", "LOC100130417"), class = "factor")), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11",
"V12", "V13"), class = "data.frame", row.names = c(NA, -5L))
> dput(cde)
structure(list(V1 = structure(c(1L, 1L, 1L, 1L), .Label = "chr1", class = "factor"),
V2 = c(28565L, 712911L, 761091L, 761091L), V3 = c(28699L,
714068L, 762902L, 763246L), V4 = structure(c(3L, 2L, 1L,
1L), .Label = c("Rank_11761", "Rank_12239", "Rank_31267"), class = "factor"),
V5 = c(1L, 208L, 227L, 227L), V6 = structure(c(1L, 1L, 1L,
1L), .Label = ".", class = "factor"), V7 = c(2.17937, 8.78112,
10.29544, 10.29544), V8 = c(1.99334, 22.93857, 24.8322, 24.8322
), V9 = structure(c(1L, 2L, 3L, 3L), .Label = c("0.18208|chr1",
"20.88265|chr1", "22.77738|chr1"), class = "factor"), V10 = c(14361L,
700244L, 761585L, 763177L), V11 = c(29370L, 714068L, 762902L,
794826L), V12 = structure(c(2L, 3L, 1L, 4L), .Label = c("NR_024321",
"NR_024540", "NR_033908", "NR_047525"), class = "factor"),
V13 = structure(c(4L, 3L, 1L, 2L), .Label = c("LINC00115",
"LINC01128", "LOC100288069", "WASH7P"), class = "factor")), .Names = c("V1",
"V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11",
"V12", "V13"), class = "data.frame", row.names = c(NA, -4L))
答案 0 :(得分:2)
我们可以使用merge
merge(abc[c("V12", "V13")], cde, by = c("V12", "V13"))
# V12 V13 V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11
#1 NR_047525 LINC01128 chr1 761091 763246 Rank_11761 227 . 10.29544 24.8322 22.77738|chr1 763177 794826
如果我们需要将“V9”列拆分为
cbind(abc, read.table(text = as.character(abc$V9), sep="|", header= FALSE))
答案 1 :(得分:1)
使用match_df
包<{1}}的另一个选项
plyr