我正在尝试按照答案中的代码:Find largest rectangle containing only zeros in an N×N binary matrix
我很难理解如何找到算法找到的最大矩形的原点(x,y)
。
来自馆藏
import namedtuple
from operator import mul
import numpy as np
import functools
x = np.zeros(shape=(4,5))
x[0][0] = 1
x[0][1] = 1
x[0][2] = 1
x[0][3] = 1
x[1][0] = 1
x[1][1] = 1
x[1][2] = 1
x[1][3] = 1
print(x)
print(max_size(x))
Info = namedtuple('Info', 'start height')
def find_maximum_frame(mat, value=1):
"""Find height, width of the largest rectangle containing all `value`'s."""
it = iter(mat)
hist = [(el==value) for el in next(it, [])]
max_size, _ = max_rectangle_size(hist)
old_size = (0,0)
coordinates = None
for y,row in enumerate(it):
hist = [(1+h) if el == value else 0 for h, el in zip(hist, row)]
new_rect, c = max_rectangle_size(hist)
max_size = max(max_size, new_rect, key=area)
if max_size[0]*max_size[1] > old_size[0]*old_size[1]:
coordinates = [c[0], (y+2)-max_size[0]]
old_size = max_size
return [max_size, coordinates]
def max_rectangle_size(histogram):
"""Find height, width of the largest rectangle that fits entirely under
the histogram.
"""
stack = []
top = lambda: stack[-1]
max_size = (0, 0) # height, width of the largest rectangle
pos = 0 # current position in the histogram
for pos, height in enumerate(histogram):
start = pos # position where rectangle starts
while True:
if not stack or height > top().height:
stack.append(Info(start, height)) # push
print(stack)
elif stack and height < top().height:
max_size = max(max_size, (top().height, (pos - top().start)),
key=area)
start, _ = stack.pop()
continue
break # height == top().height goes here
pos += 1
coordinates = [0,0]
old_size = (0,0)
for start, height in stack:
max_size = max(max_size, (height, (pos - start)), key=area)
if max_size[0]*max_size[1] > old_size[0]*old_size[1]:
coordinates = [start,height]
old_size = max_size
return [max_size, coordinates]
def area(size):
return functools.reduce(mul, size)
上面的代码在我的示例中似乎可以找到矩形的左上角,但是当我在较大的图像上尝试它时,它会崩溃,我无法调试原因。
答案 0 :(得分:3)
这是一个修改J.F. Sebastian Gist version的answer的解决方案:
from collections import namedtuple
Info = namedtuple('Info', 'start height')
# returns height, width, and position of the top left corner of the largest
# rectangle with the given value in mat
def max_size(mat, value=0):
it = iter(mat)
hist = [(el==value) for el in next(it, [])]
max_size_start, start_row = max_rectangle_size(hist), 0
for i, row in enumerate(it):
hist = [(1+h) if el == value else 0 for h, el in zip(hist, row)]
mss = max_rectangle_size(hist)
if area(mss) > area(max_size_start):
max_size_start, start_row = mss, i+2-mss[0]
return max_size_start[:2], (start_row, max_size_start[2])
# returns height, width, and start column of the largest rectangle that
# fits entirely under the histogram
def max_rectangle_size(histogram):
stack = []
top = lambda: stack[-1]
max_size_start = (0, 0, 0) # height, width, start of the largest rectangle
pos = 0 # current position in the histogram
for pos, height in enumerate(histogram):
start = pos # position where rectangle starts
while True:
if not stack or height > top().height:
stack.append(Info(start, height)) # push
elif stack and height < top().height:
max_size_start = max(
max_size_start,
(top().height, pos - top().start, top().start),
key=area)
start, _ = stack.pop()
continue
break # height == top().height goes here
pos += 1
for start, height in stack:
max_size_start = max(max_size_start, (height, pos - start, start),
key=area)
return max_size_start
def area(size): return size[0]*size[1]
一旦将位置添加到测试中,代码就会从Gist version传递所有测试。这里,例如,第一次测试:
self.assertEqual(max_size(self.__s2m("""
0 0 0 0 1 0
0 0 1 0 0 1
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0""")), ((3, 4), (2, 1)))
尺寸(3,4)的矩形位于(2,1)处。
答案 1 :(得分:0)
这里是hackerrank同样问题的解决方法...
public static long largestRectangle(List<Integer> h) {
// Write your code here
Stack<Integer> st1 = new Stack<>();
int i = 0;
int topIndex = 0;
long area;
long finalArea=0;
while(i<h.size()){
if(st1.isEmpty() || h.get(st1.peek()) <= h.get(i)){
st1.push(i++);
}else{
topIndex = st1.peek();
st1.pop();
area = h.get(topIndex) * (st1.isEmpty() ? i : i-1-st1.peek());
if(area > finalArea ){
finalArea = area;
}
}
}
while(st1.isEmpty()==false){
topIndex = st1.peek();
st1.pop();
area = h.get(topIndex) * (st1.isEmpty() ? i : i-1-st1.peek());
if(area > finalArea ){
finalArea = area;
}
}
return finalArea;
}