我有以下pandas DataFrame。
import pandas as pd
df = pd.read_csv('filename.csv')
print(df)
dog A B C
0 dog1 0.787575 0.159330 0.053095
1 dog10 0.770698 0.169487 0.059815
2 dog11 0.792689 0.152043 0.055268
3 dog12 0.785066 0.160361 0.054573
4 dog13 0.795455 0.150464 0.054081
5 dog14 0.794873 0.150700 0.054426
.. ....
8 dog19 0.811585 0.140207 0.048208
9 dog2 0.797202 0.152033 0.050765
10 dog20 0.801607 0.145137 0.053256
11 dog21 0.792689 0.152043 0.055268
....
我想在所有行之间找到A
的绝对差异。如何做到这一点(记住数据增长很快)?
对#34;对#34;数据是尝试:
df1 = df.set_index("dog")
from itertools import combinations
cc = list(combinations(df,2))
out = pd.DataFrame([df1.loc[c,:].sum() for c in cc], index=cc)
然而,这只是总结。你怎么做多个操作?
答案 0 :(得分:4)
考虑以下数据框:
$GLOBALS['TCA']['tt_content']['types'][$myCType]['columnsOverrides']['images']['config']['maxitems'] = 1;
使用numpy的subtract.outer函数,然后取绝对值。
ExtensionUtility::PLUGIN_TYPE_CONTENT_ELEMENT
获取组合元组的列表:
import numpy as np
import pandas as pd
df = pd.DataFrame({'Dog': list('ABCDEFG'), 'A': range(7)})[['Dog', 'A']]
df