Java如何根据值将树图分成两个相等的映射

时间:2016-07-03 19:00:41

标签: java sorting maps treemap

好的,我有这个包含playerID和玩家averageScore的树形图。我想把它分成另外两张地图,这样每支队伍都有一定数量的玩家,整体玩家得分大致相同(偏差约为+/- 2)

private TreeMap<Integer, Double> teamScoreMap = new TreeMap<>();
private TreeMap<Integer, Double> team1 = new TreeMap<>();
private TreeMap<Integer, Double> team2 = new TreeMap<>();

public void createTeam()
   {
       teamScoreMap.put(001, 5.0);
       teamScoreMap.put(002, 8.4);
       teamScoreMap.put(003, 2.1);
       teamScoreMap.put(004, 6.5);
       teamScoreMap.put(005, 4.5);
       teamScoreMap.put(006, 3.2);
       teamScoreMap.put(007, 9.8);
       teamScoreMap.put(008, 7.6);
   } 

3 个答案:

答案 0 :(得分:1)

试试这个

TreeMap<Integer,Double> teamScoreMap = new TreeMap<Integer, Integer>(bigMap);
int size = teamScoreMap.size();
SortedMap<Integer, Double> team1 = teamScoreMap .subMap(0, size/2);
SortedMap<Integer, Double> team2 = teamScoreMap .subMap((size/2)+1,size);

没有理由实际投射到TreeMap,因为它没有提供任何与SortedMap相关的功能。

答案 1 :(得分:1)

逻辑就在那里,你只需要完成代码就可以将每个团队添加到每个地图中。

制作所有可能的团队,将他们的平均值与之前的最佳平均值进行比较。如果差异低于前一个,则交换它们。

最后,你们两者之间的差异最大。

输出

的示例
{false=[1=5.0, 4=6.5, 5=4.5, 8=7.6], true=[2=8.4, 3=2.1, 6=3.2, 7=9.8]}
// false = 23.6 in total             true = 23.5 in total
// As you see, the difference between both is the minimum possible (0.1)
public class Test {
    private Map<Integer, Double> tsm = new TreeMap<>();
    private Map<Integer, Double> team1 = new TreeMap<>();
    private Map<Integer, Double> team2 = new TreeMap<>();

    public void splitTeams() {
        double average = tsm.values()
                            .stream()
                            .mapToDouble(x->x)
                            .average()
                            .getAsDouble();
        int[] bestTeam = new int[4];
        double bestAverage = 10;
        double tmp;

        for (int i = 1 ; i <= 8 ; i++) {
            for (int j = 1 ; j <= 8 ; j++) {
                for (int k = 1 ; k <= 8 ; k++) {
                    for (int l = 1 ; l <= 8 ; l++) {
                        if (Stream.of(i, j, k, l).distinct().count() == 4) {
                            tmp = Stream.of(tsm.get(i), tsm.get(j), tsm.get(k), tsm.get(l))
                                        .mapToDouble(x -> x)
                                        .average()
                                        .getAsDouble();
                            if (Math.abs(average - tmp) < bestAverage) {
                                bestTeam[0] = i;
                                bestTeam[1] = j;
                                bestTeam[2] = k;
                                bestTeam[3] = l;
                                bestAverage = Math.abs(average - tmp);
                            }
                        }
                    }
                }
            }
        }

        List<Integer> team1 = Arrays.stream(bestTeam).boxed().collect(Collectors.toList());
        Map<Boolean, List<Entry<Integer, Double>>> both = tsm.entrySet()
                                                             .stream()
                                                             .collect(Collectors.partitioningBy(e -> team1.contains(e.getKey())));
        System.out.println(both);
    }

    public void createTeam() {
        tsm.put(1, 5.0);
        tsm.put(2, 8.4);
        tsm.put(3, 2.1);
        tsm.put(4, 6.5);
        tsm.put(5, 4.5);
        tsm.put(6, 3.2);
        tsm.put(7, 9.8);
        tsm.put(8, 7.6);
    }

    public static void main(String[] args) {
        Test t = new Test();
        t.createTeam();
        t.splitTeams();
        System.out.println();
    }
}

答案 2 :(得分:0)

answer by Yassin Hajaj显示了计算此特定情况的最佳结果的一种方法。更一般地说,您要解决的是subset sum problem的特殊实例,并且存在相关问题 - 例如divide an array into two sets with minimal difference

基本上没有找到最佳解决方案的有效方法。

计算最优解的蛮力方法是计算一半元素的所有可能的选择,计算它们的总和,并找到与所需总和偏差最小的总和。

然而,在许多情况下,人们对 最佳解决方案不感兴趣,而只是在“好”解决方案中。这可以通过贪婪的方法来实现:首先,按降序对分数进行排序。然后,浏览团队成员列表,并将每个成员分配给当前具有较低分数的团队。

这两种方法都是在这里实现的,例如:

import java.math.BigInteger;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Map.Entry;
import java.util.NoSuchElementException;
import java.util.Set;
import java.util.TreeMap;


public class MapSplit
{
    public static void main(String[] args)
    {
        TreeMap<Integer, Double> teamScoreMap = new TreeMap<Integer, Double>();
        teamScoreMap.put(1, 5.0);
        teamScoreMap.put(2, 8.4);
        teamScoreMap.put(3, 2.1);
        teamScoreMap.put(4, 6.5);
        teamScoreMap.put(5, 4.5);
        teamScoreMap.put(6, 3.2);
        teamScoreMap.put(7, 9.8);
        teamScoreMap.put(8, 7.6);

        solveOptimal(teamScoreMap);
        solveGreedy(teamScoreMap);
    }

    private static void solveOptimal(Map<Integer, Double> teamScoreMap)
    {
        List<Entry<Integer, Double>> entries = 
            new ArrayList<Entry<Integer, Double>>(
                teamScoreMap.entrySet());

        double totalSum = computeSum(entries);
        ChoiceIterable<Entry<Integer, Double>> ci = 
            new ChoiceIterable<Entry<Integer, Double>>(
                teamScoreMap.size() / 2, entries);

        List<Entry<Integer, Double>> bestTeam = null;
        double minError = Double.POSITIVE_INFINITY;
        for (List<Entry<Integer, Double>> team : ci)
        {
            double teamSum = computeSum(team);
            double error = Math.abs(teamSum - totalSum * 0.5);
            if (error < minError)
            {
                bestTeam = team;
                minError = error;
            }
        }

        Set<Entry<Integer, Double>> teamA = 
            new LinkedHashSet<Entry<Integer, Double>>(bestTeam);
        Set<Entry<Integer, Double>> teamB = 
            new LinkedHashSet<Entry<Integer, Double>>(
                teamScoreMap.entrySet());
        teamB.removeAll(teamA);

        System.out.println("Optimal result:");
        printResult(teamA, teamB);
    }

    private static void solveGreedy(Map<Integer, Double> teamScoreMap)
    {
        List<Entry<Integer, Double>> entries = 
            new ArrayList<Entry<Integer, Double>>(
                teamScoreMap.entrySet());
        Collections.sort(entries, (e0, e1) -> 
            Double.compare(e1.getValue(), e0.getValue()));

        Set<Entry<Integer, Double>> teamA = 
            new LinkedHashSet<Entry<Integer, Double>>();
        double sumA = 0;
        Set<Entry<Integer, Double>> teamB = 
            new LinkedHashSet<Entry<Integer, Double>>();
        double sumB = 0;

        for (Entry<Integer, Double> entry : entries)
        {
            if (sumA < sumB)
            {
                teamA.add(entry);
                sumA += entry.getValue();
            }
            else
            {
                teamB.add(entry);
                sumB += entry.getValue();
            }
        }

        System.out.println("Greedy result:");
        printResult(teamA, teamB);
    }

    private static void printResult(
        Collection<Entry<Integer, Double>> teamA, 
        Collection<Entry<Integer, Double>> teamB)
    {
        System.out.println("Team A:");
        for (Entry<Integer, Double> entry : teamA)
        {
            System.out.println("  " + entry);
        }
        System.out.println("Sum: " + computeSum(teamA));

        System.out.println("Team B:");
        for (Entry<Integer, Double> entry : teamB)
        {
            System.out.println("  " + entry);
        }
        System.out.println("Sum: " + computeSum(teamB));
    }

    private static double computeSum(
        Collection<Entry<Integer, Double>> entries)
    {
        return entries.stream().map(
            e -> e.getValue()).reduce(0.0, (a,b) -> a+b);
    }


}

// From https://github.com/javagl/Combinatorics/blob/master/src/main/
// java/de/javagl/utils/math/combinatorics/CombinationIterable.java
class ChoiceIterable<T> implements Iterable<List<T>>
{
    private final List<T> input;
    private final int sampleSize;
    private final long numElements;
    public ChoiceIterable(int sampleSize, List<T> input)
    {
        this.sampleSize = sampleSize;
        this.input = input;
        BigInteger nf = factorial(input.size());
        BigInteger kf = factorial(sampleSize);
        BigInteger nmkf = factorial(input.size() - sampleSize);
        BigInteger divisor = kf.multiply(nmkf);
        BigInteger result = nf.divide(divisor);
        numElements = result.longValue();    
    }

    public static BigInteger factorial(int n)
    {
        BigInteger f = BigInteger.ONE;
        for (int i = 2; i <= n; i++)
        {
            f = f.multiply(BigInteger.valueOf(i));
        }
        return f;
}     
    @Override
    public Iterator<List<T>> iterator()
    {
        return new Iterator<List<T>>()
        {
            private int current = 0;
            private final int chosen[] = new int[sampleSize];
            // Initialization of first choice
            {
                for (int i = 0; i < sampleSize; i++)
                {
                    chosen[i] = i;
                }
            }

            @Override
            public boolean hasNext()
            {
                return current < numElements;
            }

            @Override
            public List<T> next()
            {
                if (!hasNext())
                {
                    throw new NoSuchElementException("No more elements");
                }

                List<T> result = new ArrayList<T>(sampleSize);
                for (int i = 0; i < sampleSize; i++)
                {
                    result.add(input.get(chosen[i]));
                }
                current++;
                if (current < numElements)
                {
                    increase(sampleSize - 1, input.size() - 1);
                }
                return result;
            }

            private void increase(int n, int max)
            {
                if (chosen[n] < max)
                {
                    chosen[n]++;
                    for (int i = n + 1; i < sampleSize; i++)
                    {
                        chosen[i] = chosen[i - 1] + 1;
                    }
                }
                else
                {
                    increase(n - 1, max - 1);
                }
            }

            @Override
            public void remove()
            {
                throw new UnsupportedOperationException(
                    "May not remove elements from a choice");
            }
        };
    }
}

(用于计算选择的类取自here

输出如下:

Optimal result:
Team A:
  1=5.0
  4=6.5
  5=4.5
  8=7.6
Sum: 23.6
Team B:
  2=8.4
  3=2.1
  6=3.2
  7=9.8
Sum: 23.5
Greedy result:
Team A:
  2=8.4
  8=7.6
  1=5.0
  3=2.1
Sum: 23.1
Team B:
  7=9.8
  4=6.5
  5=4.5
  6=3.2
Sum: 24.0

显示贪婪的结果是最佳结果,但在这种情况下仍然相当不错。