嵌套for循环:列表 - 未获得所需的输出

时间:2016-06-28 21:29:44

标签: python python-3.x csv neural-network nested-loops

我想要做的是估计每个肽的分数,即行

我的代码如下:

import csv, math

def train_data(fname):
        #load csv training files
        peptide= []
        allele= []
        score = []
        with open (fname) as train:
                reader = csv.DictReader(train, delimiter='\t')
                for row in reader:
                        peptide.append(row['peptide'])
                        allele.append(row['allele'])
                        score.append(row['score'])

        return [peptide, allele, score]

def ff():
        peptide, allele, score = train_data('sample.txt')
        p={'A':(0.074+0.077)/2, 'R':(0.052+0.053)/2, 'N':(0.045+0.044)/2, 'D':(0.054+0.051)/2, 'C':(0.025+0.022)/2, 'Q':(0.034+0.035)/2, 'E':(0.054+0.056)/2, 'G':(0.074+0.074)/2, 'H':(0.026+0.025)/2, 'I':(0.068+0.064)/2, 'L':(0.099+0.096)/2, 'K':(0.058+0.058)/2, 'M':(0.025+0.024)/2, 'F':(0.047+0.048)/2, 'P':(0.039+0.041)/2, 'S':(0.057+0.059)/2, 'T':(0.051+0.053)/2, 'W':(0.013+0.014)/2, 'Y':(0.032+0.033)/2, 'V':(0.073+0.072)/2}
        for i in range(len(peptide)):
#                peptide[i]=list(peptide[i])
                peptide.append(peptide[i])
                for j in range(len(peptide[i])):
                        print(peptide[2][j])
                        #est_score+=p[peptide[i][j]]
                print ('---')
        print(peptide[2][1])

if __name__=='__main__':

        ff()

当我运行此代码时,我得到的输出是所有的肽值,即 peptide [i] [j] ,用于循环中的print stmt但是我的想要只获得 peptide [2] [j] 值。 在循环之外它工作正常。 print(肽[2] [1]) 使o / p完全正常,即值' A '

我的csv文件是这样的:

peptide score   allele  
AAAGAEAGKATTEEQ 0.190842    DRB1_0101
AAAGAEAGKATTEEQ 0.006301    DRB1_0301
AAAGAEAGKATTEEQ 0.066851    DRB1_0401
AAAGAEAGKATTEEQ 0.006344    DRB1_0405
AAAGAEAGKATTEEQ 0.035130    DRB1_0701
AAAGAEAGKATTEEQ 0.006288    DRB1_0802
AAAGAEAGKATTEEQ 0.176268    DRB1_0901
AAAGAEAGKATTEEQ 0.042555    DRB1_1101
AAAGAEAGKATTEEQ 0.114855    DRB1_1302
AAAGAEAGKATTEEQ 0.006377    DRB1_1501
AAAGAEAGKATTEEQ 0.006296    DRB3_0101
AAAGAEAGKATTEEQ 0.006313    DRB4_0101
AAAGAEAGKATTEEQ 0.070413    DRB5_0101
  

我想要做的是估计每个肽的分数,即行   并非所有行都使用:   的 est_score + = P [肽[i] [j]

2 个答案:

答案 0 :(得分:1)

import csv, math

p={'A':(0.074+0.077)/2, 'R':(0.052+0.053)/2, 'N':(0.045+0.044)/2, 'D':(0.054+0.051)/2, 'C':(0.025+0.022)/2, 'Q':(0.034+0.035)/2, 'E':(0.054+0.056)/2, 'G':(0.074+0.074)/2, 'H':(0.026+0.025)/2, 'I':(0.068+0.064)/2, 'L':(0.099+0.096)/2, 'K':(0.058+0.058)/2, 'M':(0.025+0.024)/2, 'F':(0.047+0.048)/2, 'P':(0.039+0.041)/2, 'S':(0.057+0.059)/2, 'T':(0.051+0.053)/2, 'W':(0.013+0.014)/2, 'Y':(0.032+0.033)/2, 'V':(0.073+0.072)/2}

def train_data(fname):
        #load csv training files
        peptide= []
        allele= []
        score = []
        with open (fname) as train:
                reader = csv.DictReader(train, delimiter='\t')
                for row in reader:
                        peptide.append(row['peptide'])
                        allele.append(row['allele'])
                        score.append(row['score'])

        return [peptide, allele, score]

def ff():
        peptide, allele, score = train_data('peptide.txt')
        for i in range(len(peptide)):
                est_score = 0
                for char in peptide[i]:
                    est_score += p[char]
                print("est_score: " + str(est_score), "\t: read_score: " + str(score[i]) )
                print ('---')
        print(peptide[2][1])

if __name__=='__main__':

        ff()

est_score始终相同,因为在您提供的文件中,每行的肽相同。这打印:

est_score: 0.9625000000000001   : read_score: 0.190842
---
est_score: 0.9625000000000001   : read_score: 0.006301
---
est_score: 0.9625000000000001   : read_score: 0.066851
---
est_score: 0.9625000000000001   : read_score: 0.006344
---
est_score: 0.9625000000000001   : read_score: 0.035130
---
est_score: 0.9625000000000001   : read_score: 0.006288
---
est_score: 0.9625000000000001   : read_score: 0.176268
---
est_score: 0.9625000000000001   : read_score: 0.042555
---
est_score: 0.9625000000000001   : read_score: 0.114855
---
est_score: 0.9625000000000001   : read_score: 0.006377
---
est_score: 0.9625000000000001   : read_score: 0.006296
---
est_score: 0.9625000000000001   : read_score: 0.006313
---
est_score: 0.9625000000000001   : read_score: 0.070413
---
A

答案 1 :(得分:0)

对我而言,它只打印peptide[2][j],但它打印了很多次,这就是你想要的吗?

A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A
A
A
G
A
E
A
G
K
A
T
T
E
E
Q
---
A

python2和python3都给了我相同的结果。