我想将转换后的流写入Elasticsearch索引,如下所示:
transformed.foreachRDD(rdd => {
if (!rdd.isEmpty()) {
val messages = rdd.map(prepare)
messages.saveAsNewAPIHadoopFile("-", classOf[NullWritable], classOf[MapWritable], classOf[EsOutputFormat], ec)
}
})
第val messages = rdd.map(prepare)
行会引发错误(见下文)。我不得不尝试不同的方法来解决此问题(例如,在@transient
旁边添加val conf
),但似乎没有任何效果。
6/06/28 19:23:00错误JobScheduler:运行作业流作业时出错 1467134580000 ms.0 org.apache.spark.SparkException:任务没有 可序列化的 org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:304) 在 org.apache.spark.util.ClosureCleaner $ .ORG $阿帕奇$火花$ UTIL $ ClosureCleaner $$干净(ClosureCleaner.scala:294) 在 org.apache.spark.util.ClosureCleaner $清洁机壳(ClosureCleaner.scala:122) 在org.apache.spark.SparkContext.clean(SparkContext.scala:2055)at org.apache.spark.rdd.RDD $$ anonfun $ map $ 1.apply(RDD.scala:324)at at org.apache.spark.rdd.RDD $$ anonfun $ map $ 1.apply(RDD.scala:323)at at org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:150) 在 org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:111) 在org.apache.spark.rdd.RDD.withScope(RDD.scala:316)at org.apache.spark.rdd.RDD.map(RDD.scala:323)at de.kp.spark.elastic.stream.EsStream $$ anonfun $运行$ 1.适用(EsStream.scala:77) 在 de.kp.spark.elastic.stream.EsStream $$ anonfun $运行$ 1.适用(EsStream.scala:75) 在 org.apache.spark.streaming.dstream.DStream $$ anonfun $ foreachRDD $ 1 $$ anonfun $ $应用MCV $ SP $ 3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.DStream $$ anonfun $ foreachRDD $ 1 $$ anonfun $ $应用MCV $ SP $ 3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1 $$ anonfun $ $应用MCV $ SP $ 1.适用$ MCV $ SP(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1 $$ anonfun $ $应用MCV $ SP $ 1.适用(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1 $$ anonfun $ $应用MCV $ SP $ 1.适用(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1.适用$ MCV $ SP(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1.适用(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1.适用(ForEachDStream.scala:49) 在scala.util.Try $ .apply(Try.scala:161)at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)at at org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler $$ anonfun $运行$ 1.适用$ MCV $ SP(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler $$ anonfun $运行$ 1.适用(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler $$ anonfun $运行$ 1.适用(JobScheduler.scala:224) 在scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)at org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler.run(JobScheduler.scala:223) 在 java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 在 java.util.concurrent.ThreadPoolExecutor中的$ Worker.run(ThreadPoolExecutor.java:617) 在java.lang.Thread.run(Thread.java:745)引起: java.io.NotSerializableException:org.apache.hadoop.conf.Configuration 序列化堆栈: - 对象不可序列化(类:org.apache.hadoop.conf.Configuration,value:配置: core-default.xml,core-site.xml,mapred-default.xml,mapred-site.xml, yarn-default.xml,yarn-site.xml) - field(class:de.kp.spark.elastic.stream.EsStream,name:de $ kp $ spark $ elastic $ stream $ EsStream $$ conf,type:class org.apache.hadoop.conf.Configuration) - object(类de.kp.spark.elastic.stream.EsStream,de.kp.spark.elastic.stream.EsStream@6b156e9a) - field(class:de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1,name:$ outer,type:class de.kp.spark.elastic.stream.EsStream) - object(类de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1,) - field(类:de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1 $$ anonfun $ 2,name: $ outer,类型:class de.kp.spark.elastic.stream.EsStream $$ anonfun $运行$ 1) - 对象(类de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1 $$ anonfun $ 2, ) 在 org.apache.spark.serializer.SerializationDebugger $ .improveException(SerializationDebugger.scala:40) 在 org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) 在 org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101) 在 org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:301) ... 30多个线程中的异常" main" org.apache.spark.SparkException:任务不可序列化 org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:304) 在 org.apache.spark.util.ClosureCleaner $ .ORG $阿帕奇$火花$ UTIL $ ClosureCleaner $$干净(ClosureCleaner.scala:294) 在 org.apache.spark.util.ClosureCleaner $清洁机壳(ClosureCleaner.scala:122) 在org.apache.spark.SparkContext.clean(SparkContext.scala:2055)at org.apache.spark.rdd.RDD $$ anonfun $ map $ 1.apply(RDD.scala:324)at at org.apache.spark.rdd.RDD $$ anonfun $ map $ 1.apply(RDD.scala:323)at at org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:150) 在 org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:111) 在org.apache.spark.rdd.RDD.withScope(RDD.scala:316)at org.apache.spark.rdd.RDD.map(RDD.scala:323)at de.kp.spark.elastic.stream.EsStream $$ anonfun $运行$ 1.适用(EsStream.scala:77) 在 de.kp.spark.elastic.stream.EsStream $$ anonfun $运行$ 1.适用(EsStream.scala:75) 在 org.apache.spark.streaming.dstream.DStream $$ anonfun $ foreachRDD $ 1 $$ anonfun $ $应用MCV $ SP $ 3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.DStream $$ anonfun $ foreachRDD $ 1 $$ anonfun $ $应用MCV $ SP $ 3.apply(DStream.scala:661) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1 $$ anonfun $ $应用MCV $ SP $ 1.适用$ MCV $ SP(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1 $$ anonfun $ $应用MCV $ SP $ 1.适用(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1 $$ anonfun $ $应用MCV $ SP $ 1.适用(ForEachDStream.scala:50) 在 org.apache.spark.streaming.dstream.DStream.createRDDWithLocalProperties(DStream.scala:426) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1.适用$ MCV $ SP(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1.适用(ForEachDStream.scala:49) 在 org.apache.spark.streaming.dstream.ForEachDStream $$ anonfun $ 1.适用(ForEachDStream.scala:49) 在scala.util.Try $ .apply(Try.scala:161)at org.apache.spark.streaming.scheduler.Job.run(Job.scala:39)at at org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler $$ anonfun $运行$ 1.适用$ MCV $ SP(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler $$ anonfun $运行$ 1.适用(JobScheduler.scala:224) 在 org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler $$ anonfun $运行$ 1.适用(JobScheduler.scala:224) 在scala.util.DynamicVariable.withValue(DynamicVariable.scala:57)at org.apache.spark.streaming.scheduler.JobScheduler $ JobHandler.run(JobScheduler.scala:223) 在 java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) 在 java.util.concurrent.ThreadPoolExecutor中的$ Worker.run(ThreadPoolExecutor.java:617) 在java.lang.Thread.run(Thread.java:745)引起: java.io.NotSerializableException:org.apache.hadoop.conf.Configuration 序列化堆栈: - 对象不可序列化(类:org.apache.hadoop.conf.Configuration,value:配置: core-default.xml,core-site.xml,mapred-default.xml,mapred-site.xml, yarn-default.xml,yarn-site.xml) - field(class:de.kp.spark.elastic.stream.EsStream,name:de $ kp $ spark $ elastic $ stream $ EsStream $$ conf,type:class org.apache.hadoop.conf.Configuration) - object(类de.kp.spark.elastic.stream.EsStream,de.kp.spark.elastic.stream.EsStream@6b156e9a) - field(class:de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1,name:$ outer,type:class de.kp.spark.elastic.stream.EsStream) - object(类de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1,) - field(类:de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1 $$ anonfun $ 2,name: $ outer,类型:class de.kp.spark.elastic.stream.EsStream $$ anonfun $运行$ 1) - 对象(类de.kp.spark.elastic.stream.EsStream $$ anonfun $ run $ 1 $$ anonfun $ 2, ) 在 org.apache.spark.serializer.SerializationDebugger $ .improveException(SerializationDebugger.scala:40) 在 org.apache.spark.serializer.JavaSerializationStream.writeObject(JavaSerializer.scala:47) 在 org.apache.spark.serializer.JavaSerializerInstance.serialize(JavaSerializer.scala:101) 在 org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:301) ......还有30多个
它是否与Hadoop的配置有某种关系? (我引用此消息:class: org.apache.hadoop.conf.Configuration, value: Configuration: core-default.xml, core-site.xml, mapred-default.xml, mapred-site.xml, yarn-default.xml, yarn-site.xml
)
更新
class EsStream(name:String,conf:HConf) extends SparkBase with Serializable {
/* Elasticsearch configuration */
val ec = getEsConf(conf)
/* Kafka configuration */
val (kc,topics) = getKafkaConf(conf)
def run() {
val ssc = createSSCLocal(name,conf)
/*
* The KafkaInputDStream returns a Tuple where only the second component
* holds the respective message; we therefore reduce to a DStream[String]
*/
val stream = KafkaUtils.createStream[String,String,StringDecoder,StringDecoder](ssc,kc,topics,StorageLevel.MEMORY_AND_DISK).map(_._2)
/*
* Inline transformation of the incoming stream by any function that maps
* a DStream[String] onto a DStream[String]
*/
val transformed = transform(stream)
/*
* Write transformed stream to Elasticsearch index
*/
transformed.foreachRDD(rdd => {
if (!rdd.isEmpty()) {
val messages = rdd.map(prepare)
messages.saveAsNewAPIHadoopFile("-", classOf[NullWritable], classOf[MapWritable], classOf[EsOutputFormat], ec)
}
})
ssc.start()
ssc.awaitTermination()
}
def transform(stream:DStream[String]) = stream
private def getEsConf(config:HConf):HConf = {
val _conf = new HConf()
_conf.set("es.nodes", conf.get("es.nodes"))
_conf.set("es.port", conf.get("es.port"))
_conf.set("es.resource", conf.get("es.resource"))
_conf
}
private def getKafkaConf(config:HConf):(Map[String,String],Map[String,Int]) = {
val cfg = Map(
"group.id" -> conf.get("kafka.group"),
"zookeeper.connect" -> conf.get("kafka.zklist"),
"zookeeper.connection.timeout.ms" -> conf.get("kafka.timeout")
)
val topics = conf.get("kafka.topics").split(",").map((_,conf.get("kafka.threads").toInt)).toMap
(cfg,topics)
}
private def prepare(message:String):(Object,Object) = {
val m = JSON.parseFull(message) match {
case Some(map) => map.asInstanceOf[Map[String,String]]
case None => Map.empty[String,String]
}
val kw = NullWritable.get
val vw = new MapWritable
for ((k, v) <- m) vw.put(new Text(k), new Text(v))
(kw, vw)
}
}
答案 0 :(得分:0)
从EsStream
的类构造函数中删除class EsStream(name:String)
,并将其写为public def init(conf:HConf):Map(String,String)
。
接下来创建一个带签名的方法:ec
在此方法中,您将阅读所需的配置并更新(kc,topics)
和{{1}}。
在此之后你应该调用你的run方法。