自学神经网络的基础知识,我决定在学习XOR功能的超小型网络上学习。它由两个输入神经元,两个隐藏神经元和一个输出神经元组成。问题是它没有学习..所以我必须在我的落后()做错事?代码非常小,应该使用任何支持c ++ 11的编译器进行编译。
#include <stdio.h>
#include <stdlib.h>
#include <vector>
#include <cmath>
#include <algorithm>
#include <numeric>
using namespace std;
float tanh_activate(float x) { return (exp(2*x)-1)/(exp(2*x)+1); }
float tanh_gradient(float x) { return 1-x*x; }
vector<float> input = { 0.0f, 0.0f };
vector<float> hiddenW = { 0.5f, 0.5f };
vector<float> hidden = { 0.0f, 0.0f };
vector<float> output = { 0.0f };
void forward()
{
float inputSum = accumulate( input.begin(), input.end(), 0.0f );
hidden[0] = tanh_activate( inputSum ) * hiddenW[0];
hidden[1] = tanh_activate( inputSum ) * hiddenW[1];
output[0] = tanh_activate( accumulate( hidden.begin(), hidden.end(), 0.0f ) );
}
void backward( float answer )
{
auto outputError = answer - output[0];
auto error = outputError * tanh_gradient( output[0] );
auto layerError = accumulate( hiddenW.begin(),
hiddenW.end(),
0.0f,
[error]( float sum, float w ) {
return sum + (w * error);
} );
// Calculating error for each activation in hidden layer but this is unused
// currently since their is only one hidden layer.
vector<float> layerE( hidden.size() );
transform( hidden.begin(),
hidden.end(),
layerE.begin(),
[layerError]( float a ) {
return tanh_gradient( a ) * layerError;
} );
// update weights
for( auto wi = hiddenW.begin(), ai = hidden.begin(); wi != hiddenW.end(); ++wi, ++ai )
*wi += *ai * error;
}
int main( int argc, char* argv[] )
{
for( int i = 0; i < 10000000; ++i )
{
// pick two bits at random...
int i1 = ((random() % 2)==0)?1.0f:0.0f;
int i2 = ((random() % 2)==0)?1.0f:0.0f;
// load our input layer...
input[0] = (float)i1;
input[1] = (float)i2;
// compute network output...
forward();
// we're teaching our network XOR
float expected = ((i1^i2)==0) ? 0.0f : 1.0f;
if( i % 10000 == 0 )
{
printf("output = %f\n",output[0]);
printf("expected = %f\n",expected);
}
// backprop...
backward( expected );
}
return 0;
}
答案 0 :(得分:4)
我在你的神经元模型中缺少偏差(阈值,基础信号)。
https://en.wikipedia.org/wiki/Artificial_neuron#Basic_structure
您也可能不希望在反向传播中做出如此大的修正。
https://en.wikipedia.org/wiki/Backpropagation#Phase_2:_Weight_update
从重量中减去梯度的比率(百分比)。
比率可能低于100%。