作为一个更大问题的一个子集,我正在尝试为NxN板(包含N²个单元)编写以下2个约束:
在电路板上,预先已经填充了几个单元格,并且应该忽略此SO问题中的约束,因此我们使用整数2来表示这些单元格并将未知单元格建模为具有二进制布尔值的有限域值:
model(Board,N,Hints) :-
dim(Board,[N,N]),
( foreach(Row-Col,Hints), param(Board)
do
2 is Board[Row,Col]
),
( multifor([I,J],1,N), param(Board)
do
Cell is Board[I,J],
( var(Cell) -> Cell :: 0..1 ; true )
).
代码中的约束:
hint_constraints(Board,N,RowHints,ColHints) :-
( for(I,1,N), foreach(RH,RowHints), foreach(CH,ColHints), param(Board,N)
do
Row is Board[I,1..N],
Col is Board[1..N,I],
ic_global:occurrences(1,Row,RH), % Here, K=1 and N=RH
ic_global:occurrences(1,Col,CH) % Here, K=1 and N=CH
).
block_constraints(Board,N) :-
( multifor([I,J],1,(N-1)), param(Board)
do
Block is Board[I..I+1,J..J+1],
flatten(Block,BlockFlat),
Sum #:: [0,1],
ic_global:occurrences(1,BlockFlat,Sum) % Here, K=1
).
简单执行谜题:
solve(BT) :-
puzzle(N,_,RowHints,ColHints,Hints),
model(N,RowHints,ColHints,Hints,Board),
hint_constraints(Board,N,RowHints,ColHints),
block_constraints(Board,N),
once search(Board,0,most_constrained,indomain_max,complete,[backtrack(BT)]).
对于8x8拼图,几乎可以立即找到第一个解决方案:
?- solve(BT).
[](0, 0, 0, 0, 0, 0, 1, 2)
[](2, 1, 0, 2, 1, 0, 0, 2)
[](0, 0, 0, 0, 0, 0, 1, 0)
[](0, 0, 0, 1, 0, 0, 0, 0)
[](1, 0, 0, 0, 2, 0, 0, 0)
[](2, 2, 1, 0, 1, 2, 1, 2)
[](1, 2, 0, 2, 0, 0, 2, 0)
[](0, 0, 0, 0, 1, 0, 0, 1)
BT = 0
Yes (0.01s cpu)
对于20x20实例,我已经让它运行了大约5分钟而没有得到任何结果。
为了研究一个约束是否会比另一个更加昂贵,我分别运行了两个约束:
当我们使用hint_constraints / 4而不是block_constraints / 2时,我们得到:
?- solve(BT).
[](1, 1, 1, 1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0)
[](1, 1, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0)
[](2, 1, 1, 1, 2, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0)
[](1, 1, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 2, 2)
[](1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 2, 2, 0, 0, 2, 0)
[](2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0)
[](2, 0, 0, 0, 1, 2, 1, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0)
[](1, 0, 0, 0, 2, 1, 1, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 2, 0, 0)
[](2, 0, 0, 0, 1, 1, 0, 1, 1, 2, 1, 0, 2, 0, 2, 0, 2, 0, 0, 2)
[](2, 0, 0, 0, 1, 0, 2, 1, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 2, 0)
[](0, 0, 0, 0, 2, 0, 2, 0, 0, 1, 2, 1, 2, 1, 1, 0, 0, 1, 0, 2)
[](0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 0, 0)
[](0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 1, 1, 1, 0, 1, 0, 2, 0, 0)
[](2, 0, 0, 0, 2, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1)
[](0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 0, 1, 0, 1)
[](0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 2, 2, 2, 1)
[](0, 2, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 1, 1, 1)
[](0, 0, 2, 0, 0, 0, 0, 0, 2, 2, 0, 2, 0, 1, 0, 0, 1, 2, 1, 1)
[](2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2)
[](0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 1, 2, 1, 1, 1, 2, 1)
BT = 0
Yes (0.04s cpu)
并且可以验证是否满足所有行/列出现。相反,当我们使用block_constraints / 2,但不是hint_constraints / 2时:
?- solve(BT).
[](0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0)
[](0, 1, 2, 1, 0, 2, 1, 2, 1, 0, 1, 0, 1, 2, 1, 0, 1, 2, 2, 0)
[](2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0)
[](0, 1, 0, 1, 0, 1, 0, 2, 2, 1, 2, 1, 0, 1, 0, 1, 0, 0, 2, 2)
[](0, 0, 0, 0, 0, 2, 0, 1, 2, 0, 0, 0, 0, 0, 2, 2, 0, 1, 2, 1)
[](2, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 1, 2, 1, 0, 0, 0, 0)
[](2, 0, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1)
[](0, 1, 0, 1, 2, 1, 0, 0, 0, 2, 1, 0, 1, 0, 2, 1, 0, 2, 0, 0)
[](2, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 2, 0, 2, 1, 0, 2)
[](2, 1, 0, 1, 0, 1, 2, 0, 0, 1, 0, 1, 0, 1, 0, 1, 2, 0, 2, 1)
[](0, 0, 0, 0, 2, 0, 2, 1, 0, 0, 2, 0, 2, 0, 0, 0, 0, 1, 0, 2)
[](0, 1, 0, 1, 2, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 2, 0, 0)
[](0, 0, 0, 0, 0, 2, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 1, 0)
[](2, 1, 0, 1, 2, 2, 0, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0)
[](0, 0, 2, 0, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0)
[](0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 0, 1, 2, 1, 0, 1, 2, 2, 2, 0)
[](0, 2, 0, 0, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 1)
[](0, 1, 2, 1, 0, 0, 0, 0, 2, 2, 1, 2, 1, 0, 1, 0, 0, 2, 0, 0)
[](2, 0, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 2)
[](0, 1, 2, 1, 0, 0, 0, 0, 2, 0, 2, 2, 1, 0, 2, 0, 0, 0, 2, 0)
BT = 0
Yes (0.01s cpu)
我们可以再次验证2x2块约束是否成功保存。不幸的是,当同时使用这两个约束时,程序似乎不会在5分钟内完成。我对这种行为感到有点困惑,因为两个约束分别表现得非常快。虽然我知道必须在内部进行大量检查以确保每个行/列的正确出现同时仍然在整个过程中满足块约束,但事实上它需要超过5分钟才能让我想到其他必须我编写块约束的方式有问题。
有没有人知道如何优化块发生约束的实现?
提前致谢!
拼图实例
拼图(8,简单,[1,2,1,1,1,3,1,2], [2,1,1,1,3,0,3,1], [1-8,2-1,2-4,2-8,5-5,6-1,6-2,6-6,6-8,7-2,7-4,7-7])
砌(20,中,[5,2,6,2,7,1,6,3,5,4,5,3,4,2,4,3,5,4,4,5] , [5,4,3,3,6,3,4,5,2,4,4,4,2,7,1,5,3,6,3,6], [1-6,1-15,2-3,2-6,2-8,2-14,2-18,2-19,3-1,3-5,3-11,4-8,4 -9,4-11,4-19,4-20, 5-6,5-9,5-15,5-16,5-19,6-1,6-11,6-15,7-1,7-6,7-15,8-5,8- 10,8-15,8-18, 9-1,9-10,9-13,9-15,9-17,9-20,10-1,10-7,10-17,10-19,11-5,11-7,11- 11,11-13,11-20, 12-5,12-18,13-6,13-11,13-18,14-1,14-5,14-6,14-10,15-3,15-12,16-6,16- 13,16-17,16-18,16-19, 17-2,17-5,17-7,17-15,18-3,18-9,18-10,18-12,18-18,19-1,19-6,19-20,20- 3,20-9,20-11,20-12,20-15,20-19]。