正如您在此sqlfiddle上看到的,我有这个架构:
CREATE TABLE reviews
(`id` int(11) NOT NULL AUTO_INCREMENT,
`shop_id` int(11),
`order_id` char(255),
`product_id` char(32),
`review_time` int(11),
PRIMARY KEY (`id`)
)
;
INSERT INTO reviews
(`shop_id`, `order_id`, `product_id`, `review_time`)
VALUES
('10', '100', '1000', '1466190000'),
('10', '100', '1000', '1466276400'),
('10', '100', '1000', '1466462800'),
('20', '800', '8000', '1466249200')
;
CREATE TABLE tags
(`id` int(11) NOT NULL AUTO_INCREMENT,
`shop_id` int(11),
`order_id` char(255),
`product_id` char(32),
`tag_time` INT(11) NULL,
PRIMARY KEY (`id`)
)
;
INSERT INTO tags
(`shop_id`, `order_id`, `product_id`, `tag_time`)
VALUES
('10', '100', '1000', '1466449200'),
('10', '100', '1000', NULL),
('10', '100', '3000', NULL),
('20', '800', '8000', '1469449200')
;
我需要按日期显示统计数据,显示每个日期有多少评论,有多少评论以及有多少评论没有。我正在使用此查询:
SELECT
DATE_FORMAT(FROM_UNIXTIME(r.`review_time`), "%d.%m.%Y") AS review_submited_on,
r.`shop_id`,
COUNT(*) as total_orders,
COUNT(*) as tagged_orders
FROM
reviews AS r
LEFT JOIN tags as t
ON r.`shop_id` = t.`shop_id` AND
r.`order_id` = t.`order_id` AND
r.`product_id` = t.`product_id`
WHERE
t.`tag_time` IS NOT NULL
GROUP BY r.`shop_id`, r.`order_id`, r.`product_id`
ORDER BY review_submited_on ASC
更新 预期结果如下:
| review_submited_on | shop_id | total_orders | tagged_orders |
|--------------------|---------|--------------|---------------|
| 17.06.2016 | 10 | 3 | 1 |
| 18.06.2016 | 20 | 1 | 1 |
我为演示创建了此sqlfiddle。 感谢您的帮助:))
答案 0 :(得分:0)
试试这个,如果你想要的话,请告诉我。
SELECT review_submited_on, shop_id, total_orders, IFNULL(tagged_orders, 0) tagged_orders
FROM
(SELECT shop_id, COUNT(DISTINCT shop_id, order_id, product_id) total_orders, DATE_FORMAT(FROM_UNIXTIME(review_time), "%d.%m.%Y") AS review_submited_on
FROM reviews
GROUP BY shop_id) review_counter
LEFT JOIN
(SELECT shop_id, COUNT(DISTINCT shop_id, order_id, product_id) tagged_orders
FROM tags
WHERE tag_time IS NOT NULL
GROUP BY shop_id) tag_counter
USING (shop_id)
结果
| review_submited_on | shop_id | total_orders | tagged_orders |
|--------------------|---------|--------------|---------------|
| 17.06.2016 | 10 | 1 | 1 |
| 18.06.2016 | 20 | 1 | 1 |