cudaStream奇怪的表现

时间:2016-06-15 13:48:14

标签: cuda

我尝试用cudaStream开发一个sobel的例子。这是程序:

void SobelStream(void)
{

    cv::Mat imageGrayL2 = cv::imread("/home/xavier/Bureau/Image1.png",0);


    u_int8_t *u8_PtImageHost;
    u_int8_t *u8_PtImageDevice;

    u_int8_t *u8_ptDataOutHost;
    u_int8_t *u8_ptDataOutDevice;

    u_int8_t u8_Used[NB_STREAM];

    u8_ptDataOutHost = (u_int8_t *)malloc(WIDTH*HEIGHT*sizeof(u_int8_t));
    checkCudaErrors(cudaMalloc((void**)&u8_ptDataOutDevice,WIDTH*HEIGHT*sizeof(u_int8_t)));

    u8_PtImageHost = (u_int8_t *)malloc(WIDTH*HEIGHT*sizeof(u_int8_t));
    checkCudaErrors(cudaMalloc((void**)&u8_PtImageDevice,WIDTH*HEIGHT*sizeof(u_int8_t)));


    cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<unsigned char>();
    checkCudaErrors(cudaMallocArray(&Array_PatchsMaxDevice, &channelDesc,WIDTH,HEIGHT ));
    checkCudaErrors(cudaBindTextureToArray(Image,Array_PatchsMaxDevice));


    dim3 threads(BLOC_X,BLOC_Y);
    dim3 blocks(ceil((float)WIDTH/BLOC_X),ceil((float)HEIGHT/BLOC_Y));

    ClearKernel<<<blocks,threads>>>(u8_ptDataOutDevice,WIDTH,HEIGHT);


    int blockh = HEIGHT/NB_STREAM;


    Stream = (cudaStream_t *) malloc(NB_STREAM * sizeof(cudaStream_t));

    for (int i = 0; i < NB_STREAM; i++)
    {
        checkCudaErrors(cudaStreamCreate(&(Stream[i])));
    }

//    for(int i=0;i<NB_STREAM;i++)
//    {
//        cudaSetDevice(0);
//        cudaStreamCreate(&Stream[i]);
//    }


    cudaEvent_t Start;
    cudaEvent_t Stop;
    cudaEventCreate(&Start);
    cudaEventCreate(&Stop);

    cudaEventRecord(Start, 0);


    //////////////////////////////////////////////////////////
    for(int i=0;i<NB_STREAM;i++)
    {
        if(i == 0)
        {
            int localHeight  = blockh;
            checkCudaErrors(cudaMemcpy2DToArrayAsync( Array_PatchsMaxDevice,
                                                      0,
                                                      0,
                                                      imageGrayL2.data,//u8_PtImageDevice,
                                                      WIDTH,
                                                      WIDTH,
                                                      blockh,
                                                      cudaMemcpyHostToDevice  ,
                                                      Stream[i]));

            dim3 threads(BLOC_X,BLOC_Y);
            dim3 blocks(ceil((float)WIDTH/BLOC_X),ceil((float)localHeight/BLOC_Y));
            SobelKernel<<<blocks,threads,0,Stream[i]>>>(u8_ptDataOutDevice,0,WIDTH,localHeight-1);
            checkCudaErrors(cudaGetLastError());

            u8_Used[i] = 1;

        }else{


            int ioffsetImage =  WIDTH*(HEIGHT/NB_STREAM  );
            int hoffset = HEIGHT/NB_STREAM *i;
            int hoffsetkernel = HEIGHT/NB_STREAM -1 + HEIGHT/NB_STREAM* (i-1);
            int localHeight  = min(HEIGHT - (blockh*i),blockh);

            //printf("hoffset: %d hoffsetkernel %d localHeight %d rest %d ioffsetImage %d \n",hoffset,hoffsetkernel,localHeight,HEIGHT - (blockh +1 +blockh*(i-1)),ioffsetImage*i/WIDTH);

            checkCudaErrors(cudaMemcpy2DToArrayAsync( Array_PatchsMaxDevice,
                                                      0,
                                                      hoffset,
                                                      &imageGrayL2.data[ioffsetImage*i],//&u8_PtImageDevice[ioffset*i],
                            WIDTH,
                            WIDTH,
                            localHeight,
                            cudaMemcpyHostToDevice  ,
                            Stream[i]));


            u8_Used[i] = 1;
            if(HEIGHT - (blockh +1 +blockh*(i-1))<=0)
            {
                break;
            }
        }
    }



    ///////////////////////////////////////////
    for(int i=0;i<NB_STREAM;i++)
    {
        if(i == 0)
        {
            int localHeight  = blockh;


            dim3 threads(BLOC_X,BLOC_Y);
            dim3 blocks(1,1);
            SobelKernel<<<blocks,threads,0,Stream[i]>>>(u8_ptDataOutDevice,0,WIDTH,localHeight-1);
            checkCudaErrors(cudaGetLastError());

            u8_Used[i] = 1;

        }else{


            int ioffsetImage =  WIDTH*(HEIGHT/NB_STREAM  );
            int hoffset = HEIGHT/NB_STREAM *i;
            int hoffsetkernel = HEIGHT/NB_STREAM -1 + HEIGHT/NB_STREAM* (i-1);
            int localHeight  = min(HEIGHT - (blockh*i),blockh);


            dim3 threads(BLOC_X,BLOC_Y);
            dim3 blocks(1,1);

            SobelKernel<<<blocks,threads,0,Stream[i]>>>(u8_ptDataOutDevice,hoffsetkernel,WIDTH,localHeight);
            checkCudaErrors(cudaGetLastError());

            u8_Used[i] = 1;
            if(HEIGHT - (blockh +1 +blockh*(i-1))<=0)
            {
                break;
            }
        }
    }


    ///////////////////////////////////////////////////////
    for(int i=0;i<NB_STREAM;i++)
    {
        if(i == 0)
        {
            int localHeight  = blockh;
            checkCudaErrors(cudaMemcpyAsync(u8_ptDataOutHost,u8_ptDataOutDevice,WIDTH*(localHeight-1)*sizeof(u_int8_t),cudaMemcpyDeviceToHost,Stream[i]));
            u8_Used[i] = 1;

        }else{

            int ioffsetImage =  WIDTH*(HEIGHT/NB_STREAM  );
            int hoffset = HEIGHT/NB_STREAM *i;
            int hoffsetkernel = HEIGHT/NB_STREAM -1 + HEIGHT/NB_STREAM* (i-1);
            int localHeight  = min(HEIGHT - (blockh*i),blockh);

            checkCudaErrors(cudaMemcpyAsync(&u8_ptDataOutHost[hoffsetkernel*WIDTH],&u8_ptDataOutDevice[hoffsetkernel*WIDTH],WIDTH*localHeight*sizeof(u_int8_t),cudaMemcpyDeviceToHost,Stream[i]));

            u8_Used[i] = 1;
            if(HEIGHT - (blockh +1 +blockh*(i-1))<=0)
            {
                break;
            }
        }
    }


    for(int i=0;i<NB_STREAM;i++)
    {
        cudaStreamSynchronize(Stream[i]);
    }

    cudaEventRecord(Stop, 0);

    cudaEventSynchronize(Start);
    cudaEventSynchronize(Stop);


    float dt_ms;
    cudaEventElapsedTime(&dt_ms, Start, Stop);

    printf("dt_ms %f \n",dt_ms);

}

我的程序执行时表现非常奇怪。我决定描述一下我的例子,我明白了:

enter image description here

我不明白似乎每个流都在互相等待。 有人能帮帮我吗?

1 个答案:

答案 0 :(得分:2)

首先,请在将来提供完整的代码。我也正在处理你的交叉发布here以填写内核大小等一些细节。

您有两个问题需要解决:

首先,只要您希望使用cudaMemcpyAsync,您很可能希望使用固定主机分配。如果您使用创建的分配,例如对于malloc,就异步并发执行而言,您将无法从cudaMemcpyAsync获得预期的行为。 programming guide

中介绍了这种必要性
  

如果副本中涉及主机内存,则必须对其进行页面锁定。

因此,对代码进行的第一个更改是将其转换为:

u8_PtImageHost   = (u_int8_t *)malloc(WIDTH*HEIGHT*sizeof(u_int8_t));
u8_ptDataOutHost = (u_int8_t *)malloc(WIDTH*HEIGHT*sizeof(u_int8_t));

到此:

checkCudaErrors(cudaHostAlloc(&u8_PtImageHost, WIDTH*HEIGHT*sizeof(u_int8_t), cudaHostAllocDefault));
checkCudaErrors(cudaHostAlloc(&u8_ptDataOutHost, WIDTH*HEIGHT*sizeof(u_int8_t), cudaHostAllocDefault));
仅根据我的测试,单独进行此更改,您的执行持续时间从大约21毫秒降至7毫秒。这样做的原因是没有改变,我们就不会有任何重叠:

enter image description here

随着更改,复制活动可以相互重叠(H-> D和D-> H)并与内核执行重叠:

enter image description here

您要执行并发内核执行的第二个问题是您的内核太大(块/线程太多):

#define WIDTH   6400
#define HEIGHT  4800
#define NB_STREAM 10

#define BLOC_X 32
#define BLOC_Y 32

    dim3 threads(BLOC_X,BLOC_Y);
    dim3 blocks(ceil((float)WIDTH/BLOC_X),ceil((float)HEIGHT/BLOC_Y));

我建议如果这些是您需要运行的内核的大小,那么尝试争取内核重叠可能没什么好处 - 每个内核都会启动足够的块来“填充”GPU,因此您已经暴露了足够的并行性以保持GPU忙碌。但是,如果您迫切希望看到内核并发,那么您可以使内核使用较小的数量的块,同时使每个内核花费更多时间执行。我们可以通过启动1个块来完成此操作,并且只需要每个块中的线程执行图像过滤。