我一直在尝试将代码从Python重写为Swift,但我仍然坚持应该将最小二乘解法返回到线性矩阵方程的函数。有没有人知道用Swift编写的库,它有一个与 numpy.linalg.lstsq
等效的方法?我很感激你的帮助。
Python代码:
a = numpy.array([[p2.x-p1.x,p2.y-p1.y],[p4.x-p3.x,p4.y-p3.y],[p4.x-p2.x,p4.y-p2.y],[p3.x-p1.x,p3.y-p1.y]])
b = numpy.array([number1,number2,number3,number4])
res = numpy.linalg.lstsq(a,b)
result = [float(res[0][0]),float(res[0][1])]
return result
到目前为止的Swift代码:
var matrix1 = [[p2.x-p1.x, p2.y-p1.y],[p4.x-p3.x, p4.y-p3.y], [p4.x-p2.x, p4.y-p2.y], [p3.x-p1.x, p3.y-p1.y]]
var matrix2 = [number1, number2, number3, number4]
答案 0 :(得分:5)
Accelerate框架包含LAPACK线性代数包, 它具有DGELS功能,可以解决欠线或超定线性系统。来自文档:
DGELS解决了超定或欠定的实际线性系统 使用QR或LQ涉及M-by-N矩阵A或其转置 A的分解。假设A具有完全排名。
这是一个如何从Swift中使用该函数的示例。 它本质上是this C sample code的翻译。
func solveLeastSquare(A A: [[Double]], B: [Double]) -> [Double]? {
precondition(A.count == B.count, "Non-matching dimensions")
var mode = Int8(bitPattern: UInt8(ascii: "N")) // "Normal" mode
var nrows = CInt(A.count)
var ncols = CInt(A[0].count)
var nrhs = CInt(1)
var ldb = max(nrows, ncols)
// Flattened columns of matrix A
var localA = (0 ..< nrows * ncols).map {
A[Int($0 % nrows)][Int($0 / nrows)]
}
// Vector B, expanded by zeros if ncols > nrows
var localB = B
if ldb > nrows {
localB.appendContentsOf([Double](count: ldb - nrows, repeatedValue: 0.0))
}
var wkopt = 0.0
var lwork: CInt = -1
var info: CInt = 0
// First call to determine optimal workspace size
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows, &localB, &ldb, &wkopt, &lwork, &info)
lwork = Int32(wkopt)
// Allocate workspace and do actual calculation
var work = [Double](count: Int(lwork), repeatedValue: 0.0)
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows, &localB, &ldb, &work, &lwork, &info)
if info != 0 {
print("A does not have full rank; the least squares solution could not be computed.")
return nil
}
return Array(localB.prefix(Int(ncols)))
}
一些注意事项:
dgels_()
修改传递的矩阵和矢量数据,并期望
矩阵为&#34;扁平&#34;包含A
列的数组。
此外,右侧预计为长度为max(M, N)
的数组。
因此,首先将输入数据复制到局部变量。dgels_()
来传递,这就是原因
它们都存储在var
s。Int
和CInt
。示例1:来自http://www.seas.ucla.edu/~vandenbe/103/lectures/ls.pdf的超定系统。
let A = [[ 2.0, 0.0 ],
[ -1.0, 1.0 ],
[ 0.0, 2.0 ]]
let B = [ 1.0, 0.0, -1.0 ]
if let x = solveLeastSquare(A: A, B: B) {
print(x) // [0.33333333333333326, -0.33333333333333343]
}
示例2:欠定系统,最小规范
解决x_1 + x_2 + x_3 = 1.0
。
let A = [[ 1.0, 1.0, 1.0 ]]
let B = [ 1.0 ]
if let x = solveLeastSquare(A: A, B: B) {
print(x) // [0.33333333333333337, 0.33333333333333337, 0.33333333333333337]
}
更新 Swift 3 和 Swift 4:
func solveLeastSquare(A: [[Double]], B: [Double]) -> [Double]? {
precondition(A.count == B.count, "Non-matching dimensions")
var mode = Int8(bitPattern: UInt8(ascii: "N")) // "Normal" mode
var nrows = CInt(A.count)
var ncols = CInt(A[0].count)
var nrhs = CInt(1)
var ldb = max(nrows, ncols)
// Flattened columns of matrix A
var localA = (0 ..< nrows * ncols).map { (i) -> Double in
A[Int(i % nrows)][Int(i / nrows)]
}
// Vector B, expanded by zeros if ncols > nrows
var localB = B
if ldb > nrows {
localB.append(contentsOf: [Double](repeating: 0.0, count: Int(ldb - nrows)))
}
var wkopt = 0.0
var lwork: CInt = -1
var info: CInt = 0
// First call to determine optimal workspace size
var nrows_copy = nrows // Workaround for SE-0176
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows_copy, &localB, &ldb, &wkopt, &lwork, &info)
lwork = Int32(wkopt)
// Allocate workspace and do actual calculation
var work = [Double](repeating: 0.0, count: Int(lwork))
dgels_(&mode, &nrows, &ncols, &nrhs, &localA, &nrows_copy, &localB, &ldb, &work, &lwork, &info)
if info != 0 {
print("A does not have full rank; the least squares solution could not be computed.")
return nil
}
return Array(localB.prefix(Int(ncols)))
}