我需要删除一列低于某个值的所有行。我使用下面的命令,但这会将列作为对象返回。我需要将其保留为int64
:
df["customer_id"] = df.drop(df["customer_id"][df["customer_id"] < 9999999].index)
df = df.dropna()
我之后尝试将该字段重新转换为int64
,但是这会导致以下错误,来自完全不同的列的数据:
invalid literal for long() with base 10: '2014/03/09 11:12:27'
答案 0 :(得分:1)
我认为boolean indexing
需要reset_index
:
import pandas as pd
df = pd.DataFrame({'a': ['s', 'd', 'f', 'g'],
'customer_id':[99999990, 99999997, 1000, 8888]})
print (df)
a customer_id
0 s 99999990
1 d 99999997
2 f 1000
3 g 8888
df1 = df[df["customer_id"] > 9999999].reset_index(drop=True)
print (df1)
a customer_id
0 s 99999990
1 d 99999997
drop
的解决方案,但速度较慢:
df2 = (df.drop(df.loc[df["customer_id"] < 9999999, 'customer_id'].index))
print (df2)
a customer_id
0 s 99999990
1 d 99999997
<强>计时强>:
In [12]: %timeit df[df["customer_id"] > 9999999].reset_index(drop=True)
1000 loops, best of 3: 676 µs per loop
In [13]: %timeit (df.drop(df.loc[df["customer_id"] < 9999999, 'customer_id'].index))
1000 loops, best of 3: 921 µs per loop
答案 1 :(得分:0)
切割整个框架有什么问题(如有必要,还要重新编制索引)?
df = df[df["customer_id"] < 9999999]
df.index = range(0,len(df))