是否可以沿着具有粗糙曲线的线从一组点创建多边形,以便在两个曲率值之间选择点?
我试图使用python的opencv包(cv2
)从给定的图像中检索近似的曲线四边形形状。
例如: 给出边缘检测后的图像,例如:
并在找到cv2.findContours的轮廓后,例如:
(旁注:如果这实际上会给出方形的形状而不是围绕直线会很好 - 这个图像在其右侧的形状中的间隙闭合的算法也是必需的。 /侵蚀可能会起作用,但很可能会消除可能需要保留的某些特征。)
之后,我们可以在轮廓上使用polyDPApprox:
然而,这不是曲率依赖的 - 它只是通过使用线的最大偏差来近似。如果我们想省略一些精细的细节(这些想法可能来自错误)并保持曲率较小的点(宽的形状) - 我们可以使用函数来提供这样的东西吗?:
(红色填充表示形状将被封闭为曲线四边形。)
以下是用于分析输入图像的函数,以防有人想要它:
# input binary image
def find_feature_points(img):
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2.namedWindow('img', WINDOW_NORMAL)
cv2.imshow("img", gray)
cv2.waitKey(0)
contours, hierarchy = cv2.findContours(gray, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Draw contours to image
print contours
copy = img.copy()
# img - Image.
# pts - Array of polygonal curves.
# npts - Array of polygon vertex counters.
# ncontours - Number of curves.
# isClosed - Flag indicating whether the drawn polylines are closed or not. If they are closed, the function draws a line from the last vertex of each curve to its first vertex.
# color - Polyline color.
# thickness - Thickness of the polyline edges.
# lineType - Type of the line segments. See the line() description.
# shift - Number of fractional bits in the vertex coordinates.
cv2.polylines(img=copy, pts=contours, isClosed=1, color=(0,0,255), thickness=3)
cv2.namedWindow('contour', WINDOW_NORMAL)
cv2.imshow("contour", copy)
cv2.waitKey(0)
# Find approximation to contours
approx_conts = []
for c in contours:
curve = c
epsilon = 200
closed = True
approx_conts.append(cv2.approxPolyDP(curve, epsilon, closed))
# draw them
cv2.drawContours(img, approx_conts, -1, (0, 255, 0), 3)
cv2.namedWindow('approx', WINDOW_NORMAL)
cv2.imshow("approx", img)
cv2.waitKey(0)
return
答案 0 :(得分:0)
这是一个可能的解决方案。这个想法是:
输入图片->
结果
代码
import cv2
import numpy as np
# Load image, convert to grayscale, threshold
image = cv2.imread('1.png')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
# Find convex hull and draw onto a mask
mask = np.zeros(image.shape, dtype=np.uint8)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cnt = cnts[0]
hull = cv2.convexHull(cnt,returnPoints = False)
defects = cv2.convexityDefects(cnt,hull)
for i in range(defects.shape[0]):
s,e,f,d = defects[i,0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
cv2.line(mask,start,end,[255,255,255],3)
# Morph close to fill small holes
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3))
close = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel, iterations=2)
# Draw outline around input image
close = cv2.cvtColor(close, cv2.COLOR_BGR2GRAY)
cnts = cv2.findContours(close, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if len(cnts) == 2 else cnts[1]
cv2.drawContours(image,cnts,0,(36,255,12),1)
cv2.imshow('image', image)
cv2.waitKey()