以下是我认为解释问题的最佳方法。这不是我第一次遇到这种情况。
Lookingfor_job:是一个分类变量,用于定义失业者寻找工作的方式。类似于:课程交付,寻找代理商和致电家庭成员。它假设(1,2,...,12)区间内的值。
在这里,我想用州和lookingfor_job计算失业总人数除以按群体划分的失业总人数。最后,我需要按州的百分比,以失业者寻找工作的方式。
预期结果: x%的寻找工作的人在“打电话给朋友”选项(job_find =='2')中尝试使用状态Y.
我想的是我可以为所有类别做这件事。
svyby(~unemployed,
~state+lookingfor_job, # total unemployed population per state and way looking for a job
denominator = ~svyby(~unemployed, ~state, desocup.pnad), #total unemployed population per state
design = desocup.pnad,
svyratio,
vartype = 'ci')
我想某种程度上我可以计算分离然后分开。但是,我在复杂调查中的知识无法帮助我。
svyby(~unemployed,
~state+lookingfor_job,
design = desocup.pnad,
svytotal,
vartype= 'ci') -> findjob
svyby(~unemployed,
~state,
design = desocup.pnad,
svytotal,
vartype= 'ci') -> total
答案 0 :(得分:0)
忘记状态和svyby
,这是全国范围内估算的svyratio
吗?
# among all unemployed nationwide, what share are looking for a job?
svyratio( ~ seeking_job , denominator = ~ unemployed , design = your_design )
如果您正在寻找,那么您可以通过此配置将状态分解为svyratio
# among all unemployed (broken out by state), what share are looking for a job?
svyby( ~ seeking_job , denominator = ~ unemployed , by = ~ state , design = your_design , svyratio )
请注意,在某些情况下,svyby + svyratio中存在错误。您可能需要将所有变量添加到分母中,如下所示:
svyby( ~ find_job , denominator = ~ find_job + unemployed , by = ~ state , design = pnad , svyratio )