我在理解如何使用我在Coq中定义的一些事物方面遇到了一些麻烦。我有这个定义和功能片段:
Inductive string : Set :=
| E : string
| s : nat -> string -> string.
Inductive deduce : Set :=
|de : string -> string -> deduce.
Infix "|=" := de.
Inductive Rules : deduce -> Prop :=
| compress : forall (n : nat) (A : string), rule (( s n ( s n A)) |= ( s n A))
| transitive : forall A B C : string, rule (A |= B) -> rule (B |= C) -> rule (A |= C).
Fixpoint RepString (n m : nat): string:=
match n with
|0 => E
|S n => s m ( RepString n m)
end.
我需要证明一些显而易见的事情,但我遇到两个问题:
Lemma LongCompress (C : string)(n : nat): n >=1 -> Rules
((RepString n 0 ) |= (s 0 E) ).
Proof.
intros.
induction n.
inversion H.
simpl.
apply compress.
所以我有问题,我得到:
"Unable to unify "Rules (s ?M1805 (s ?M1805 ?M1806) |= s ?M1805 ?M1806)" with
"Rules (s 0 (RepString n 0) |- s 0 E)".'"
现在,我可以看到为什么我会收到错误,而技术上RepString n 0
与s 0 (s 0 (s 0( ... s 0 E)))
相同我只是找不到让coq知道的方法,我'我试过和apply compress with
混淆10个不同的东西,我仍然可以做对。我需要"展开"它就像那样(当然unfold
不起作用......)。
我没有想法,我非常感谢您对此提出的任何意见!
现在编辑。
Inductive Rules : deduce -> Prop :=
| compress : forall (n : nat) (A : string), rule (( s n ( s n A)) |= ( s n A))
| transitive : forall A B C : string, rule (A |= B) -> rule (B |= C) -> rule (A |= C)
| inspection : forall (n m : nat) (A : string), m < n -> rule ((s n A) |- (s m A)).
Definition less (n :nat ) (A B : string) := B |= (s n A).
Lemma oneLess (n m : nat): rule (less 0 (RepString n 1) (RepString m 1)) <-> n< m.
我概括了安东·特鲁诺夫帮助我证明的那些引理,但现在我碰到了另一面墙。我认为问题可能从我编写定理本身的方式开始,我会欣赏任何想法。
答案 0 :(得分:4)
我证明了一些更普遍的东西:对于任何两个非空的零字符串s = 0000...0
和t = 00...0
,如果length s > length t
,那么{ {1}},即
s |= t
这是一个辅助引理:
forall n m,
m <> 0 ->
n > m ->
Rules (RepString n 0 |= RepString m 0).
现在,我们可以很容易地证明我们广告中的一般引理:
Require Import Coq.Arith.Arith.
Require Import Coq.omega.Omega.
Hint Constructors Rules. (* add this line after the definition of `Rules` *)
Lemma LongCompress_helper (n m k : nat):
n = (S m) + k ->
Rules (RepString (S n) 0 |= RepString (S m) 0).
Proof.
generalize dependent m.
generalize dependent n.
induction k; intros n m H.
- Search (?X + 0 = ?X). rewrite Nat.add_0_r in H.
subst. simpl. eauto.
- apply (transitive _ (RepString n 0) _); simpl in H; rewrite H.
+ simpl. constructor.
+ apply IHk. omega.
Qed.
很容易看出,任何足够长的零字符串都可以压缩成单例字符串Lemma LongCompress_general (n m : nat):
m <> 0 ->
n > m ->
Rules (RepString n 0 |= RepString m 0).
Proof.
intros Hm Hn. destruct n.
- inversion Hn.
- destruct m.
+ exfalso. now apply Hm.
+ apply LongCompress_helper with (k := n - m - 1). omega.
Qed.
:
0