我在我的Android设备上成功运行了标准的com.google.android.gms.vision.Tracker example,现在我需要对图像进行后期处理以找到当前脸部的虹膜,跟踪器的事件方法。
那么,我如何获得与我在Tracker事件中收到的com.google.android.gms.vision.face.Face完全匹配的Bitmap框架? 这也意味着最终的位图应该与网络摄像头分辨率匹配,而不是屏幕分辨率。
一个不好的替代解决方案是在我的CameraSource上每隔几毫秒调用一次takePicture,并使用FaceDetector单独处理这张图片。虽然这有效但我有一个问题,即视频流在拍摄过程中冻结,并且我得到了大量的GC_FOR_ALLOC消息导致单个bmp facedetector内存浪费。
答案 0 :(得分:6)
你必须创建自己的Face tracker版本,它将扩展google.vision人脸检测器。在您的mainActivity或FaceTrackerActivity(在Google跟踪示例中)类中,创建您的FaceDetector类版本,如下所示:
class MyFaceDetector extends Detector<Face> {
private Detector<Face> mDelegate;
MyFaceDetector(Detector<Face> delegate) {
mDelegate = delegate;
}
public SparseArray<Face> detect(Frame frame) {
YuvImage yuvImage = new YuvImage(frame.getGrayscaleImageData().array(), ImageFormat.NV21, frame.getMetadata().getWidth(), frame.getMetadata().getHeight(), null);
ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
yuvImage.compressToJpeg(new Rect(0, 0, frame.getMetadata().getWidth(), frame.getMetadata().getHeight()), 100, byteArrayOutputStream);
byte[] jpegArray = byteArrayOutputStream.toByteArray();
Bitmap TempBitmap = BitmapFactory.decodeByteArray(jpegArray, 0, jpegArray.length);
//TempBitmap is a Bitmap version of a frame which is currently captured by your CameraSource in real-time
//So you can process this TempBitmap in your own purposes adding extra code here
return mDelegate.detect(frame);
}
public boolean isOperational() {
return mDelegate.isOperational();
}
public boolean setFocus(int id) {
return mDelegate.setFocus(id);
}
}
然后你必须通过修改你的CreateCameraSource方法加入你自己的FaceDetector和CameraSource,如下所示:
private void createCameraSource() {
Context context = getApplicationContext();
// You can use your own settings for your detector
FaceDetector detector = new FaceDetector.Builder(context)
.setClassificationType(FaceDetector.ALL_CLASSIFICATIONS)
.setProminentFaceOnly(true)
.build();
// This is how you merge myFaceDetector and google.vision detector
MyFaceDetector myFaceDetector = new MyFaceDetector(detector);
// You can use your own processor
myFaceDetector.setProcessor(
new MultiProcessor.Builder<>(new GraphicFaceTrackerFactory())
.build());
if (!myFaceDetector.isOperational()) {
Log.w(TAG, "Face detector dependencies are not yet available.");
}
// You can use your own settings for CameraSource
mCameraSource = new CameraSource.Builder(context, myFaceDetector)
.setRequestedPreviewSize(640, 480)
.setFacing(CameraSource.CAMERA_FACING_FRONT)
.setRequestedFps(30.0f)
.build();
}