我希望有一个数字可以分成2个其他数字并检查结束条件,中断每个数字直到满足条件。
我想出了以下示例来试图找出它。取一个数字,并将其分成另外两个数字:一个是原始数字乘以2而另一个数字是原始数字除以3而没有余数(//)。这将继续,直到数字大于100,等于6或正方形。
我想记录最后返回并打印出来的每一条链。我只能通过检查当前链中的第二个数字来做到这一点,并且不够聪明,无法弄清楚如何检查这两个数字。我希望每次将数字分成2个新数字时创建一个新链。
目前,这就是我所拥有的:
import numpy as np
def check_conditions(number):
if number > 100:
return False
if number == 6:
return False
if np.sqrt(number) % 1 == 0:
return False
return True
def find_decay(number):
'''
Rule: Number is broken into two chains. First chain is
mulitplied by 2. Seconds chain is // 3. Same thing happens
to both chains unless end condition is met:
1. number is greater than 100
2. number is equal to 6
3. number is a perfect square
'''
master_chain = []
while check_conditions(number):
new_chain1 = [number * 2]
master_chain.append(new_chain1)
new_chain2 = [number // 3]
master_chain.append(new_chain2)
number = new_chain2[-1]
return master_chain
if __name__ == '__main__':
print find_decay(int(raw_input('Number: ')))
有没有人想办法检查2个单独数字的while循环中的条件,比如?
答案 0 :(得分:1)
此类问题通常适用于trees和/或recursion。但是,与您满足条件的速度相比,您产生新作品的速度相当高。 (即,虽然每个值的一个产品不会超过100,但是在任何一个叉子上找到一个完美的正方形或正好6个的机会很少)
因此,您希望为您的实施设置最大递归深度,否则您将遇到解释器的限制(sys.getrecursionlimit()
)并且难以理解。
我提供了一个简单的示例,说明如何在下面执行此操作,递归构建树。
但这并不是特别有效,如果你对很长的连锁店感兴趣,那么那么你可能需要考虑用另一种方式解决。
import sys
import numpy as np
class Node(object):
def __init__(self,number,parent):
self._parent = parent
self._number = number
self._satisfied = number > 100 or number == 6 or np.sqrt(number) % 1 == 0
self._left = None
self._right = None
self._depth = parent.depth + 1 if parent != None else 1
@property
def parent(self):
return self._parent
@property
def number(self):
return self._number
@property
def satisfied(self):
return self._satisfied
@property
def depth(self):
return self._depth
@property
def left(self):
return self._left
@left.setter
def left(self,value):
self._left = value
@property
def right(self):
return self._right
@right.setter
def right(self,value):
self._right = value
def print_all_chains(node,chain=[]):
if node.left is None:
chain.append(node.number)
print '{0}: {1}'.format(node.satisfied, chain)
else:
print_all_chains(node.left, chain[:] + [node.number])
print_all_chains(node.right, chain[:] + [node.number])
def build_tree(node, maxDepth):
if not node.satisfied and node.depth<maxDepth:
node.left = Node(node.number*2, node)
build_tree(node.left,maxDepth)
node.right = Node(node.number//3, node)
build_tree(node.right,maxDepth)
def find_decay(number):
root = Node(number,None)
build_tree(root,maxDepth=10)
print_all_chains(root)
if __name__ == '__main__':
find_decay(int(raw_input('Number: ')))
答案 1 :(得分:1)
使用简单的Node
类,可以让您了解树结构。这会以级别顺序遍历树(这可以保证找到最短的链):
from collections import deque
import numpy as np
def check_conditions(number):
return number > 100 or number == 6 or np.sqrt(number) % 1 == 0
class Node():
def __init__(self, value, parent=None):
self.value, self.parent = value, parent
def chain(self):
node = self
while node:
yield node.value
node = node.parent
def find_decay(number):
agenda = deque([Node(number)])
while agenda:
node = agenda.popleft() # use pop() for depth-first
num = node.value
if check_conditions(num):
return list(node.chain())
agenda.append(Node(num//3, parent=node))
agenda.append(Node(num*2, parent=node))
if __name__ == '__main__':
for x in find_decay(int(raw_input('Number: '))):
print x,
37: 37 12 4