OpenCV:如何用图像执行文件夹的批处理?

时间:2016-05-23 19:08:31

标签: c++ multithreading opencv c++11

我有图像文件夹,我对它们执行一些基本操作的顺序:

  1. 加载源图像。
  2. 对图像执行一些图像处理。
  3. 保存结果图片。
  4. 所以我想在单独的线程中处理每个图像以加速处理。

    这是我的示例代码:

    ThreadExample.h

    #include <thread>
    
    
        class ThreadProcessing
        {
             static unsigned int concurentThreadsSupported;
    
             static void ImageProcessingFunction(const std::string &input_dir, const std::string &filename);
        public:
             void PrintNumberOfCPU();
             void MultithreadingProcessing(const std::string &dir, int N);
             void SingleThreadProcessing(const std::string &dir);
        };
    

    ThreadExample.cpp

        #include "ThreadExample.h"
    
        unsigned int ThreadProcessing::concurentThreadsSupported = std::thread::hardware_concurrency();
    
        using namespace std;
    
        void ThreadProcessing::PrintNumberOfCPU()
        {
            cout << "Number of CPU : " << concurentThreadsSupported << endl;
        }
    
    void ThreadProcessing::ImageProcessingFunction(const string &input_dir, const string &filename)
        {
            Mat src= imread(input_dir+"/"+filename);
            Mat dst;
    
            for(int i=0; i<10; ++i)
            {
                medianBlur(src, dst, 71);
            }
    
            boost::filesystem::path name= path(filename).stem();
    
            string output_filename= (input_dir/name).string()+"_output.png";
            imwrite(output_filename, dst);
        }
    
        void ThreadProcessing::SingleThreadProcessing(const string &dir)
        {
            time_t SingleThreadProcessingTime = clock();
    
            vector<string> imageNames= GetAllFilenamesInDir(dir, ".jpg");
    
            for(int i=0; i<(int)imageNames.size(); ++i)
            {
                ImageProcessingFunction(dir, imageNames[i]);
            }
    
            SingleThreadProcessingTime = clock() - SingleThreadProcessingTime;
            cout << "SingleThreadProcessingTime : " << (float(SingleThreadProcessingTime) / CLOCKS_PER_SEC) << endl;
        }
    
        void ThreadProcessing::MultithreadingProcessing(const string &dir, int N)
        {
            time_t MultithreadingProcessingTime = clock();
    
            std::thread threads[N];
    
            bool isAllImageProcessed= false;
            vector<string> imageNames= GetAllFilenamesInDir(dir, ".jpg");
    
            for(int i=0; i<(int)imageNames.size();)
            {
                //Launch a group of threads
                for(int k= 0; k< N; ++k)
                {
                    threads[k] = std::thread(ImageProcessingFunction, dir, imageNames[i]);
    
                    i++;
    
                    if(i>=(int)imageNames.size())
                    {
                        N= k+1;
                        isAllImageProcessed= true;
                        break;
                    }
                }
    
                //Join the threads with the main thread
                for(int k= 0; k< N; ++k)
                {
                    threads[k].join();
                }
    
                if(isAllImageProcessed)
                    break;
            }
    
            MultithreadingProcessingTime = clock() - MultithreadingProcessingTime;
            cout << "MultithreadingProcessingTime : " << (float(MultithreadingProcessingTime) / CLOCKS_PER_SEC) << endl;
        }
    

    main.cpp

    int main(int argc, char** argv)
    {
        ThreadProcessing threadProcessing;
        threadProcessing.PrintNumberOfCPU();
        threadProcessing.SingleThreadProcessing("/home/user/Images");
        threadProcessing.MultithreadingProcessing("/home/user/Images", 1);
        cout << "Done." << endl;
        return 0;
    }
    

    但似乎没有速度提升:

    当我使用1个线程时,输出为:

    Number of CPU : 8
    SingleThreadProcessingTime : 6.54173
    MultithreadingProcessingTime : 6.73393
    Done.
    

    当我使用4个线程时,输出为:

    Number of CPU : 8
    SingleThreadProcessingTime : 6.39089
    MultithreadingProcessingTime : 8.3365
    Done.
    

    我的代码是否有问题或概念错误?

    更新

    我也尝试了两种变体:

    1. 每个图像1个线程 - 似乎这种方法可以达到OS限制的最大线程数?并且效率低下?
    2. 代码:

      void ThreadProcessing::SingleThreadForEachImage(const string &dir)
      {
          time_t SingleThreadForEachImageTime = clock();
      
          vector<string> imageNames= GetAllFilenamesInDir(dir, ".jpg");
      
          int N= imageNames.size();
          std::thread threads[imageNames.size()];
      
          for(int i=0; i<N; ++i)
          {
      
              threads[i] = std::thread(ImageProcessingFunction, dir, imageNames[i]);
          }
      
          for(int i=0; i<N; ++i)
          {
              threads[i].join();
          }
      
          SingleThreadForEachImageTime = clock() - SingleThreadForEachImageTime;
          cout << "SingleThreadForEachImageTime : " << (float(SingleThreadForEachImageTime) / CLOCKS_PER_SEC) << endl;
      }
      
      1. 将图像拆分为N个块并在单独的线程中处理每个块。
      2. 代码:

        vector<vector<string>> ThreadProcessing::SplitNamesVector(const vector<string> &imageNames, int N)
        {
            vector<vector<string>> imageNameChunks;
        
            int K=0; //Number images in chunk
            if(imageNames.size()%N==0)
                K= imageNames.size()/N;
            else
                K= imageNames.size()/N+1;
        
            vector<string> chunk;
            for(int i=0; i<(int)imageNames.size(); ++i)
            {
                chunk.push_back(imageNames[i]);
                if(i%K==0 && i!=0)
                {
                    imageNameChunks.push_back(chunk);
                    chunk.clear();
                }
            }
        
            if(chunk.size()!=0)
                imageNameChunks.push_back(chunk);
        
            assert((int)imageNameChunks.size()==N);
        
            return imageNameChunks;
        }
        
        void ThreadProcessing::EachThreadProcessChunkOfImages(const std::string &dir, int N)
        {
            time_t EachThreadProcessChunkOfImagesTime = clock();
        
            N= std::min(N, (int)concurentThreadsSupported);
            std::thread threads[N];
        
            vector<string> imageNames= GetAllFilenamesInDir(dir, ".jpg");
            vector<vector<string>> imageNameChunks= SplitNamesVector(imageNames, N);
        
            //Launch a group of threads
            for(int k= 0; k< N; ++k)
            {
                threads[k] = std::thread(ImageProcessingFunctionChunk, dir, imageNameChunks[k]);
            }
        
            for(int k= 0; k< N; ++k)
            {
                threads[k].join();
            }
        
            EachThreadProcessChunkOfImagesTime = clock() - EachThreadProcessChunkOfImagesTime;
            cout << "EachThreadProcessChunkOfImagesTime : " << (float(EachThreadProcessChunkOfImagesTime) / CLOCKS_PER_SEC) << endl;
        }
        

        以下是结果(MultithreadingProcessingEachThreadProcessChunkOfImages使用4个主题):

        SingleThreadProcessingTime : 13.552
        MultithreadingProcessingTime : 15.581
        SingleThreadForEachImageTime : 26.7727
        EachThreadProcessChunkOfImagesTime : 15.9078
        

        更新2:

        我也在没有IO操作的情况下进行测试,只进行图像处理。

        代码:

        void ThreadProcessing::ImageProcessingFunction(const cv::Mat &img)
        {
            Mat dst;
        
            for(int i=0; i<10; ++i)
            {
                medianBlur(img, dst, 71);
            }
        }
            vector<Mat> ThreadProcessing::LoadBatchOfImages(const std::string &dir, int batchSize)
            {
                vector<string> imageNames= GetAllFilenamesInDir(dir, ".jpg");
        
                vector<Mat> imageVec;
                for(int i=0; i<N; ++i)
                {
                    string filename= dir+"/"+imageNames[i];
                    Mat img= imread(filename);
                    imageVec.push_back(img);
                }
        
                return imageVec;
            }
        
            void ThreadProcessing::OnlyProcessingTimeSequential(const std::string &dir, int batchSize)
            {
                //Load batch of images
                vector<Mat> imageVec= LoadBatchOfImages(dir, batchSize);
        
                assert((int)imageVec.size() == batchSize);
                cout << "imageVec.size() : " << imageVec.size() << endl;
        
                time_t OnlyProcessingTimeSequentialTime = clock();
        
                for(int i=0; i<batchSize; ++i)
                {
                    ImageProcessingFunction(imageVec[i]);
                }
        
                OnlyProcessingTimeSequentialTime = clock() - OnlyProcessingTimeSequentialTime;
                cout << "OnlyProcessingTimeSequentialTime : " << (float(OnlyProcessingTimeSequentialTime) / CLOCKS_PER_SEC) << endl;
            }
        
            void ThreadProcessing::OnlyProcessingTimeMultithread(const std::string &dir, int batchSize)
            {
                //Load batch of images
                vector<Mat> imageVec= LoadBatchOfImages(dir, batchSize);
        
                assert((int)imageVec.size() == batchSize);
                cout << "imageVec.size() : " << imageVec.size() << endl;
        
                time_t OnlyProcessingTimeMultithread = clock();
        
                std::thread threads[batchSize];
                for(int i=0; i<batchSize; ++i)
                {
                    threads[i] = std::thread(ImageProcessingFunction, imageVec[i]);
                }
        
                for(int i=0; i<batchSize; ++i)
                {
                    threads[i].join();
                }
        
                OnlyProcessingTimeMultithread = clock() - OnlyProcessingTimeMultithread;
                cout << "OnlyProcessingTimeMultithread : " << (float(OnlyProcessingTimeMultithread) / CLOCKS_PER_SEC) << endl;
            }
        

        我发现当使用多线程代码时,clock()会给出错误的结果,因此我使用time ./MyBinary

        结果如下:

        imageVec.size() : 8
        OnlyProcessingTimeSequentialTime : 2.34174
        Done.
        
        real    0m2.551s
        user    0m2.640s
        sys 0m0.316s
        
        
        imageVec.size() : 8
        OnlyProcessingTimeMultithread : 4.36681
        Done.
        
        real    0m0.861s
        user    0m4.564s
        sys 0m0.404s
        

        我们可以看到real时间较短。

        所以以前的结果应该是:

        SingleThreadProcessingTime : 13.6235
        
        real    0m13.845s
        user    0m13.932s
        sys 0m0.280s
        
        MultithreadingProcessingTime : 21.0902
        
        real    0m3.584s
        user    0m20.356s
        sys 0m1.316s
        
        SingleThreadForEachImageTime : 23.961
        
        real    0m3.370s
        user    0m22.584s
        sys 0m1.976s
        
        EachThreadProcessChunkOfImagesTime : 20.7885
        
        real    0m3.433s
        user    0m20.292s
        sys 0m1.116s
        

        那么应该如何衡量多线程代码执行时间?

        更新:找到答案here

        我需要使用wallclock time而不是cpu time

        这是正确的结果:

        SingleThreadProcessing :  WALLCLOCK TIME: 13.8245 seconds
        MultithreadingProcessing :  WALLCLOCK TIME: 4.1977 seconds
        SingleThreadForEachImage :  WALLCLOCK TIME: 3.25084 seconds
        EachThreadProcessChunkOfImages :  WALLCLOCK TIME: 3.36626 seconds
        OnlyProcessingTimeSequential :  WALLCLOCK TIME: 2.36041 seconds
        OnlyProcessingTimeMultithread :  WALLCLOCK TIME: 0.706921 seconds
        

1 个答案:

答案 0 :(得分:1)

正如在this question中明确指出的那样,当涉及单个磁盘上的I / O操作时,多线程实际上效率不高。你的线程所做的大部分都是I / O操作。

您可能受到磁盘速度的限制,并且由于创建线程和join()操作而导致开销受到影响,这些操作会降低函数的多线程版本。

修改

正如@DanMašek在评论中所说的那样,大部分时间实际上花在了压缩上。改进过程的一种方法是创建一个线程,从磁盘读取图像并将其提供给其他工作线程(可能通过queue,请参阅Thread pool)。这样,你按顺序阅读,但重负荷是由很多工人完成的。