这实际上有效,所以我想知道cuda是否在线程中的设备上动态分配内存?如果是这样的话__device__ malloc
的用途是什么,因为相比之下要快得多?当我在内核中使用cudaMalloc时,我问的是幕后真的发生了什么,因为它似乎比堆上的设备malloc快得多。
#include <iostream>
#include <numeric>
#include <stdlib.h>
__global__ void testMem(int* time){
int* a;
cudaMalloc(&a,sizeof(int));
a[0] = 4;
time = a[0];
}
__global__ void testMem2(int* time){
}
int main(){
int* h_time = (int*)malloc(sizeof(int));
h_time[0] =0;
int* d_time;
cudaMalloc(&d_time,sizeof(int));
clock_t start1 = clock();
cudaMemcpy(d_time,h_time,sizeof(int),cudaMemcpyHostToDevice);
testMem<<<1,1>>>(d_time);
cudaMemcpy(h_time,d_time,sizeof(int),cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
clock_t end1 = clock();
int result = end1- start1;
//float result = (float)*h_time;
//result =result/ CLOCKS_PER_SEC;
std::cout<<result<<std::endl;
std::cout<<*h_time<<std::endl;
//std::cout<<(1<<10);
cudaFree(d_time);
free(h_time);
}