消除熊猫数据帧特定日期的最快方法

时间:2016-05-18 18:46:03

标签: python datetime pandas indexing data-science

我正在使用大型数据框架,我正在努力找到一种有效的方法来消除特定的日期。请注意,我正在尝试从特定日期中消除任何度量

Pandas有这个很棒的功能,您可以致电:

df.ix['2016-04-22'] 

并从当天拉出所有行。但是如果我想从'2016-04-22'消除所有行怎么办?

我想要一个这样的函数:

df.ix[~'2016-04-22']

(但这不起作用)

另外,如果我想删除日期列表怎么办?

现在,我有以下解决方案:

import numpy as np
import pandas as pd
from numpy import random

###Create a sample data frame

dates = [pd.Timestamp('2016-04-25 06:48:33'), pd.Timestamp('2016-04-27 15:33:23'), pd.Timestamp('2016-04-23 11:23:41'), pd.Timestamp('2016-04-28    12:08:20'), pd.Timestamp('2016-04-21 15:03:49'), pd.Timestamp('2016-04-23 08:13:42'), pd.Timestamp('2016-04-27 21:18:22'), pd.Timestamp('2016-04-27 18:08:23'), pd.Timestamp('2016-04-27 20:48:22'), pd.Timestamp('2016-04-23 14:08:41'), pd.Timestamp('2016-04-27 02:53:26'), pd.Timestamp('2016-04-25 21:48:31'), pd.Timestamp('2016-04-22 12:13:47'), pd.Timestamp('2016-04-27 01:58:26'), pd.Timestamp('2016-04-24 11:48:37'), pd.Timestamp('2016-04-22 08:38:46'), pd.Timestamp('2016-04-26 13:58:28'), pd.Timestamp('2016-04-24 15:23:36'), pd.Timestamp('2016-04-22 07:53:46'), pd.Timestamp('2016-04-27 23:13:22')]

values = random.normal(20, 20, 20)

df = pd.DataFrame(index=dates, data=values, columns ['values']).sort_index()

### This is the list of dates I want to remove

removelist = ['2016-04-22', '2016-04-24']

这个for循环基本上抓取了我想删除的日期的索引,然后从主数据框的索引中删除它,然后从数据框中正面选择剩余的日期(即:好日期)。

for r in removelist:
    elimlist = df.ix[r].index.tolist()
    ind = df.index.tolist()
    culind = [i for i in ind if i not in elimlist]
    df = df.ix[culind]

那里有什么更好的吗?

我也尝试按舍入日期+ 1天进行索引,所以像这样:

df[~((df['Timestamp'] < r+pd.Timedelta("1 day")) & (df['Timestamp'] > r))]

但这真的很麻烦,并且(在一天结束时)当我需要消除n个特定日期时,我仍然会使用for循环。

必须有更好的方法!对?也许?

2 个答案:

答案 0 :(得分:3)

您可以使用列表推导创建布尔掩码。

>>> df[[d.date() not in pd.to_datetime(removelist) for d in df.index]]
                        values
2016-04-21 15:03:49  28.059520
2016-04-23 08:13:42 -22.376577
2016-04-23 11:23:41  40.350252
2016-04-23 14:08:41  14.557856
2016-04-25 06:48:33  -0.271976
2016-04-25 21:48:31  20.156240
2016-04-26 13:58:28  -3.225795
2016-04-27 01:58:26  51.991293
2016-04-27 02:53:26  -0.867753
2016-04-27 15:33:23  31.585201
2016-04-27 18:08:23  11.639641
2016-04-27 20:48:22  42.968156
2016-04-27 21:18:22  27.335995
2016-04-27 23:13:22  13.120088
2016-04-28 12:08:20  53.730511

答案 1 :(得分:1)

与@Alexander相同,但使用DatetimeIndexnumpy.in1d的属性:

mask = ~np.in1d(df.index.date, pd.to_datetime(removelist).date)
df = df.loc[mask, :]

时序:

%timeit df.loc[~np.in1d(df.index.date, pd.to_datetime(removelist).date), :]
1000 loops, best of 3: 1.42 ms per loop

%timeit df[[d.date() not in pd.to_datetime(removelist) for d in df.index]]
100 loops, best of 3: 3.25 ms per loop