我正在尝试使用Scala编写HDFS输出文件,我收到以下错误:
线程“main”中的异常org.apache.spark.SparkException:任务不可序列化 在org.apache.spark.util.ClosureCleaner $ .ensureSerializable(ClosureCleaner.scala:315) 在org.apache.spark.util.ClosureCleaner $ .org $ apache $ spark $ util $ ClosureCleaner $$ clean(ClosureCleaner.scala:305) 在org.apache.spark.util.ClosureCleaner $ .clean(ClosureCleaner.scala:132) 在org.apache.spark.SparkContext.clean(SparkContext.scala:1893) 在org.apache.spark.rdd.RDD $$ anonfun $ foreach $ 1.apply(RDD.scala:869) 在org.apache.spark.rdd.RDD $$ anonfun $ foreach $ 1.apply(RDD.scala:868) 在org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:147) 在org.apache.spark.rdd.RDDOperationScope $ .withScope(RDDOperationScope.scala:108) 在org.apache.spark.rdd.RDD.withScope(RDD.scala:286) 在org.apache.spark.rdd.RDD.foreach(RDD.scala:868) 引起:java.io.NotSerializableException:java.io.PrintWriter 序列化堆栈:
所有第23行我需要在输出文件中写一行。
代码来源:
package com.mycode.logs;
import org.apache.hadoop.conf.Configuration
import org.apache.hadoop.fs._
import org.apache.spark.SparkContext._
import org.apache.spark._
import org.apache.spark.deploy.SparkHadoopUtil
import org.apache.spark.sql._
import org.apache.spark.sql.hive.HiveContext
import scala.io._
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import java.io.PrintWriter;
/**
* @author RondenaR
*
*/
object NormalizeMSLogs{
def main(args: Array[String]){
processMsLogs("/user/temporary/*file*")
}
def processMsLogs(path: String){
System.out.println("INFO: ****************** started ******************")
// **** SetMaster is Local only to test *****
// Set context
val sparkConf = new SparkConf().setAppName("tmp-logs").setMaster("local")
val sc = new SparkContext(sparkConf)
val sqlContext = new SQLContext(sc)
val hiveContext = new HiveContext(sc)
// Set HDFS
System.setProperty("HADOOP_USER_NAME", "hdfs")
val hdfsconf = SparkHadoopUtil.get.newConfiguration(sc.getConf)
hdfsconf.set("fs.defaultFS", "hdfs://192.168.248.130:8020")
val hdfs = FileSystem.get(hdfsconf)
val output = hdfs.create(new Path("hdfs://192.168.248.130:8020/tmp/mySample.txt"))
val writer = new PrintWriter(output)
val sourcePath = new Path(path)
var count :Int = 0
var lineF :String = ""
hdfs.globStatus( sourcePath ).foreach{ fileStatus =>
val filePathName = fileStatus.getPath().toString()
val fileName = fileStatus.getPath().getName()
val hdfsfileIn = sc.textFile(filePathName)
val msNode = fileName.substring(1, fileName.indexOf("es"))
System.out.println("filePathName: " + filePathName)
System.out.println("fileName: " + fileName)
System.out.println("hdfsfileIn: " + filePathName)
System.out.println("msNode: " + msNode)
for(line <- hdfsfileIn){
//System.out.println("line = " + line)
count += 1
if(count != 23){
lineF = lineF + line + ", "
}
if(count == 23){
lineF = lineF + line + ", " + msNode
System.out.println(lineF)
writer.write(lineF)
writer.write("\n")
count = 0
lineF = ""
}
} // end for loop in file
} // end foreach loop
writer.close()
System.out.println("INFO: ******************ended ******************")
sc.stop()
}
}
答案 0 :(得分:1)
PrintWriter
对象writer
不仅不可序列化:您也不能将SparkContext
(sc
)放在foreach中:它只是一个构造通过电汇发送给工人是没有意义的。
您应该花些时间考虑通过网络发送哪些类型的对象是有意义的。任何指针/流/句柄都没有意义。结构,字符串,基元:这些做有意义包含在Closure(或广播)中。