我正在寻找hadoop中map方法的内部工作。在哪里调用map方法?是一个调用map方法的run方法吗?
答案 0 :(得分:2)
我引用了Apache文档page中的示例代码来进一步回答您的问题。
具有字计数示例主要方法的Driver类定义如下。
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
现在从Job课程的grepcode网站,回顾waitForCompletion
课程中Job
方法时发生的情况。
/**
* Submit the job to the cluster and wait for it to finish.
* @param verbose print the progress to the user
* @return true if the job succeeded
* @throws IOException thrown if the communication with the
* <code>JobTracker</code> is lost
*/
public boolean waitForCompletion(boolean verbose
) throws IOException, InterruptedException,
ClassNotFoundException {
if (state == JobState.DEFINE) {
submit();
}
if (verbose) {
jobClient.monitorAndPrintJob(conf, info);
} else {
info.waitForCompletion();
}
return isSuccessful();
}
}
现在检查submit()
类中的Job
方法代码。
/**
* Submit the job to the cluster and return immediately.
* @throws IOException
*/
public void submit() throws IOException, InterruptedException,
ClassNotFoundException {
ensureState(JobState.DEFINE);
setUseNewAPI();
// Connect to the JobTracker and submit the job
connect();
info = jobClient.submitJobInternal(conf);
super.setJobID(info.getID());
state = JobState.RUNNING;
}
现在来自JobClient课程的grepcode网站:
检查
的源代码 公共RunningJob submitJobInternal(final JobConf job
) throws FileNotFoundException,
ClassNotFoundException,
InterruptedException,
IOException
请参阅以下内容以及grepcode的内部信息。
What is the difference between JobClient.java and JobSubmitter.java in hadoop2?
答案 1 :(得分:-1)
这是使用Java编写mapreduce脚本的基本示例。你也可以将mapreduce-streaming用于其他语言,如Python和C ++,但Java是家庭语言。
在建立输入文件名,输出文件名和运行时参数等环境时,从Map
类调用函数Reduce
和Main
:
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapred.*;
import org.apache.hadoop.util.*;
public class WordCount {
public static class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
output.collect(word, one);
}
}
}
public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
output.collect(key, new IntWritable(sum));
}
}
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
conf.setJobName("wordcount");
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf);
}
}
您可以在Apache教程中完整地描述这一点:https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Example%3A+WordCount+v1.0
在此示例中,Map函数组织值并将它们指定为键值对,例如<word, 1>
,并对这些对进行排序以切换到reduce函数。 reduce函数执行聚合。
这是一个很长的练习的开始,但它产生了地图的主要概念,创建了聚合所需的键值对,并减少了聚合和响应。两者都是在数据节点中完成的,这使得分布式复制在处理速度方面具有优势。
希望这有帮助。