我的数据如下:
id | val
----------------
a1 | 10
a1 | 20
a2 | 5
a2 | 7
a2 | 2
如果我将" id"分组,我试图删除组中具有MAX(val)的行。
结果应该是:
id | val
----------------
a1 | 10
a2 | 5
a2 | 2
我正在使用SPARK DataFrame和SQLContext。我需要一些方法:
DataFrame df = sqlContext.sql("SELECT * FROM jsontable WHERE (id, val) NOT IN (SELECT is,MAX(val) from jsontable GROUP BY id)");
我该怎么做?
答案 0 :(得分:3)
您可以使用数据框操作和窗口函数来完成此操作。假设您的数据位于数据框df1
:
import org.apache.spark.sql.functions._
import org.apache.spark.sql.expressions.Window
val maxOnWindow = max(col("val")).over(Window.partitionBy(col("id")))
val df2 = df1
.withColumn("max", maxOnWindow)
.where(col("val") < col("max"))
.select("id", "val")
在Java中,等价物如下:
import org.apache.spark.sql.functions.Window;
import static org.apache.spark.sql.functions.*;
Column maxOnWindow = max(col("val")).over(Window.partitionBy("id"));
DataFrame df2 = df1
.withColumn("max", maxOnWindow)
.where(col("val").lt(col("max")))
.select("id", "val");
这是一篇关于窗口函数的好文章:https://databricks.com/blog/2015/07/15/introducing-window-functions-in-spark-sql.html
答案 1 :(得分:1)
下面是Mario的scala代码的Java实现:
iarFiles
答案 2 :(得分:0)
以下是使用RDD和更多Scala风格的方法来实现此目的:
// Let's first get the data in key-value pair format
val data = sc.makeRDD( Seq( ("a",20), ("a", 1), ("a",8), ("b",3), ("b",10), ("b",9) ) )
// Next let's find the max value from each group
val maxGroups = data.reduceByKey( Math.max(_,_) )
// We join the max in the group with the original data
val combineMaxWithData = maxGroups.join(data)
// Finally we filter out the values that agree with the max
val finalResults = combineMaxWithData.filter{ case (gid, (max,curVal)) => max != curVal }.map{ case (gid, (max,curVal)) => (gid,curVal) }
println( finalResults.collect.toList )
>List((a,1), (a,8), (b,3), (b,9))