我在Mathlab中使用Newton-Raphson方法求解Burger方程。 有关问题的描述,请参阅1。
我的问题是以下代码找到解决方案的时间 $ t = 1 $,但此时不连续性发展,然后波动 向前移动(像步进功能),但这段代码不会产生 在$ t = 1 $之后的正确解决方案。
任何改进代码的建议或意见。
这是我正在使用的Matlab代码
function BurgerFSolve2
clc; clear;
% define a 1D mesh
a = -1; b = 3; Nx = 100;
x = linspace(a,b,Nx);
dx = (b-a)/Nx;
J = length(x);
% Iinitial condition
p_init = zeros(size(x));
p_init(x<=0) = 1;
p_init(x>0 & x<1)= 1-x(x>0 & x<1);
% storing results
P = zeros(length(p_init),3001);
P(:,1) = p_init;
% Boundary condition
pL = 1; pR = 0;
% solver
dt = 0.001;
t = 0;
T = zeros(1,3001);
c = dt/dx;
for i = 1:3000
t = t+dt;
T(i+1) = t;
options=optimset('Display','iter'); % Option to display output
p = fsolve(@(p) myfun1(p, pL, pR, c, J, P(:,i)), p_init, ...
options);
% Call solver
P(:,i+1) = p;
p_init = p;
figure(1);
plot(x, p, '-o');
title(['t= ' num2str(t) ' s']);
drawnow;
end
end
function F = myfun1(p, pL, pR, c, J, p_Old)
% Rewrite the equation in the form F(x) = 0
F(1) = p(1) + c*(p(1)^2 - p(1)*pL) - p_Old(1);
for i=2:J-1
F(i) = p(i) + c*(p(i)^2 - p(i-1)*p(i)) - p_Old(i);
end
F(J) = p(J) + c*(p(J)^2 - p(J-1)*p(J)) - p_Old(J);
end