我想为组中的每个sum(x)
行实现N个下一行的data.table
,其中N是来自window
列的值。
生成样本数据的代码:
set.seed(100)
ids <- 1:100
x <- floor(runif(100, 1, 100))
groups <- floor(runif(100, 1, 10)) * 10
window <- floor(runif(100, 1, 5))
library('data.table')
data <- data.table(ids, x, groups, window)
setkey(data, groups, ids)
顶行:
ids x groups window
1: 3 55 10 4
2: 9 55 10 1
3: 13 28 10 1
4: 16 67 10 3
5: 26 17 10 3
6: 30 28 10 2
7: 36 89 10 2
8: 38 63 10 3
9: 42 86 10 3
10: 48 88 10 1
11: 49 21 10 1
12: 59 60 10 3
13: 65 45 10 4
14: 67 46 10 2
15: 88 25 10 4
16: 19 36 20 2
因此,对于第一行,结果值将根据当前行和后4行的总和计算:res = 55 + 55 + 28 + 67 + 17 = 222
对于组结束的第15行,我只需要当前行的值:res = 25 + 0(无行)= 25。
这是此逻辑的伪代码:
res <- data[, .(ids, groups, x, window ,
result = sum(.SD[.CurrentRow:(.CurrentRow + Window)], na.rm = T)),
by = groups, .SDcols = c("x")]
我希望这可以通过data.table
实施。我想避免for
循环实现。
答案 0 :(得分:3)
我不确定如果不迭代所有行就可以这样做,所以这是一个这样的解决方案:
data[, end := pmin(.I + window, .I[.N]), by = groups][
, res := sum(data$x[.I:end]), by = 1:nrow(data)][1:16]
# ids x groups window end res
# 1: 3 55 10 4 5 222
# 2: 9 55 10 1 3 83
# 3: 13 28 10 1 4 95
# 4: 16 67 10 3 7 201
# 5: 26 17 10 3 8 197
# 6: 30 28 10 2 8 180
# 7: 36 89 10 2 9 238
# 8: 38 63 10 3 11 258
# 9: 42 86 10 3 12 255
#10: 48 88 10 1 11 109
#11: 49 21 10 1 12 81
#12: 59 60 10 3 15 176
#13: 65 45 10 4 15 116
#14: 67 46 10 2 15 71
#15: 88 25 10 4 15 25
#16: 19 36 20 2 18 173
正如alexis_laz指出的那样,你可以通过计算cumsum
一次然后减去额外的部分来做得更好,从而避免明确地迭代行:
data[, res := { cs <- cumsum(x);
cs[pmin(1:.N + window, .N)] - shift(cs, fill = 0)}
, by = groups]
我将尝试解释这里发生的事情:
res := {...}
在我们的data.table中添加一列,括号内有R计算; cs = cumsum(x)
计算组内所有行的运行总和; cs[pmin(1:.N + window, .N)]
获取窗口末尾或该组最后一行的总和值; shift(cs, fill = 0)
获取前一行的运行总和; 由于这个问题有几个可行的答案,我认为值得提供基准测试:
library(microbenchmark)
m <- microbenchmark(
"tapply(rawr)" = tapplyWay(dd),
"data.table(eddi)" = data[, end := pmin(.I + window, .I[.N]), by = groups][
, res := sum(data$x[.I:end]), by = 1:nrow(data)],
"data.table(alexis_laz)" = data[, res := {cs = cumsum(x); cs[pmin(1:.N + window, .N)] - shift(cs, fill = 0)}
, by = groups],
times = 10)
print(m)
boxplot(m)
10 ^ 5行样本的结果:
Unit: milliseconds
expr min lq mean median uq max neval
tapply(rawr) 2575.12 2761.365 2898.63 2905.77 3041.08 3127.86 10
data.table(eddi) 1418.92 1570.230 1758.70 1656.14 1977.59 2358.85 10
dt(alexis_laz) 6.82 7.73 8.78 8.09 10.37 12.37119 10
答案 1 :(得分:1)
首先我们加载from flask_admin.contrib.sqla.filters import FilterGreater
class FarmerAdmin(ModelView):
FilterGreater(Farmer.amount, u'Amount')
包并将base
转换为data.table
data.frame
基本上将行绑定到一个更大的数据框架中,我们可以使用您最喜欢的聚合方法进行汇总
set.seed(100)
ids <- 1:100
x <- floor(runif(100, 1, 100))
groups <- floor(runif(100, 1, 10)) * 10
window <- floor(runif(100, 1, 5))
library('data.table')
data <- data.table(ids, x, groups, window)
setkey(data, groups, ids)
dd <- as.data.frame(data)