我必须关注df:
Col1 Col2
test Something
test2 Something
test3 Something
test Something
test2 Something
test5 Something
我想要
Col1 Col2 Occur
test Something 2
test2 Something 2
test3 Something 1
test Something 2
test2 Something 2
test5 Something 1
我试过用:
df["Occur"] = df["Col1"].value_counts()
但它没有帮助。我的Occur专栏中充满了'NaN'
答案 0 :(得分:2)
groupby
on' col1'然后在Col2
上应用transform
以返回其索引与原始df对齐的系列,以便您可以将其添加为列:
In [3]:
df['Occur'] = df.groupby('Col1')['Col2'].transform(pd.Series.value_counts)
df
Out[3]:
Col1 Col2 Occur
0 test Something 2
1 test2 Something 2
2 test3 Something 1
3 test Something 2
4 test2 Something 2
5 test5 Something 1
答案 1 :(得分:1)
您也可以将GroupBy
和transform
与size
一起使用:
df['Occur'] = df.groupby('Col1')['Col1'].transform('size')
print(df)
Col1 Col2 Occur
0 test Something 2
1 test2 Something 2
2 test3 Something 1
3 test Something 2
4 test2 Something 2
5 test5 Something 1
答案 2 :(得分:-1)
当我想保留更多的列而不是两列Col1和Col2时,我无法获得其他答案。下面对我来说很好,保留了任意数量的其他列。
df['Occur'] = df['Col1'].apply(lambda x: (df['Col1'] == x).sum())