在C中访问结构成员时,这里有很多主题是直接访问还是间接访问(通过指针)更快。
一个例子:C pointers vs direct member access for structs
一般意见是直接访问将更快(至少在理论上),因为不使用指针解除引用。
所以我在我的系统中尝试了一大堆代码:GNU Embedded Tools GCC 4.7.4,为ARM生成代码(实际上是ARM-Cortex-A15)。
令人惊讶的是,直接访问速度要慢得多。然后我生成了目标文件的汇编代码。
直接访问代码有114行汇编代码,间接访问代码有33行汇编代码。这是怎么回事?
以下是C代码和生成的函数汇编代码。结构都映射到外部存储器,结构成员都是单字节字长(无符号字符类型)。
第一个具有间接访问权限的功能:
void sub_func_1(unsigned int num_of, struct file_s *__restrict__ first_file_ptr, struct file_s *__restrict__ second_file_ptr, struct output_s *__restrict__ output_ptr)
{
if(LIKELY(num_of == 0))
{
output_ptr->curr_id = UNUSED;
output_ptr->curr_cnt = output_ptr->cnt;
output_ptr->curr_mode = output_ptr->_mode;
output_ptr->curr_type = output_ptr->type;
output_ptr->curr_size = output_ptr->size;
output_ptr->curr_allocation_type = output_ptr->allocation_type;
output_ptr->curr_allocation_localized = output_ptr->allocation_localized;
output_ptr->curr_mode_enable = output_ptr->mode_enable;
if(output_ptr->curr_cnt == 1)
{
first_file_ptr->status = BLOCK_IDLE;
first_file_ptr->type = USER_DATA_TYPE;
first_file_ptr->index = FIRST__WORD;
first_file_ptr->layer_cnt = output_ptr->layer_cnt;
second_file_ptr->status = DISABLED;
second_file_ptr->index = 0;
second_file_ptr->redundancy_version = 1;
output_ptr->total_layer_cnt = first_file_ptr->layer_cnt;
}
}
}
00000000 <sub_func_1>:
0: e3500000 cmp r0, #0
4: e92d01f0 push {r4, r5, r6, r7, r8}
8: 1a00001b bne 7c <sub_func_1+0x7c>
c: e5d34007 ldrb r4, [r3, #7]
10: e3a05008 mov r5, #8
14: e5d3c003 ldrb ip, [r3, #3]
18: e5d38014 ldrb r8, [r3, #20]
1c: e5c35001 strb r5, [r3, #1]
20: e5d37015 ldrb r7, [r3, #21]
24: e5d36018 ldrb r6, [r3, #24]
28: e5c34008 strb r4, [r3, #8]
2c: e5d35019 ldrb r5, [r3, #25]
30: e35c0001 cmp ip, #1
34: e5c3c005 strb ip, [r3, #5]
38: e5d34012 ldrb r4, [r3, #18]
3c: e5c38010 strb r8, [r3, #16]
40: e5c37011 strb r7, [r3, #17]
44: e5c3601a strb r6, [r3, #26]
48: e5c3501b strb r5, [r3, #27]
4c: e5c34013 strb r4, [r3, #19]
50: 1a000009 bne 7c <sub_func_1+0x7c>
54: e5d3400b ldrb r4, [r3, #11]
58: e3a05005 mov r5, #5
5c: e5c1c000 strb ip, [r1]
60: e5c10002 strb r0, [r1, #2]
64: e5c15001 strb r5, [r1, #1]
68: e5c20000 strb r0, [r2]
6c: e5c14003 strb r4, [r1, #3]
70: e5c20005 strb r0, [r2, #5]
74: e5c2c014 strb ip, [r2, #20]
78: e5c3400f strb r4, [r3, #15]
7c: e8bd01f0 pop {r4, r5, r6, r7, r8}
80: e12fff1e bx lr
第二个功能,可直接访问:
void sub_func_2(unsigned int output_index, unsigned int cc_index, unsigned int num_of)
{
if(LIKELY(num_of == 0))
{
output_file[output_index].curr_id = UNUSED;
output_file[output_index].curr_cnt = output_file[output_index].cnt;
output_file[output_index].curr_mode = output_file[output_index]._mode;
output_file[output_index].curr_type = output_file[output_index].type;
output_file[output_index].curr_size = output_file[output_index].size;
output_file[output_index].curr_allocation_type = output_file[output_index].allocation_type;
output_file[output_index].curr_allocation_localized = output_file[output_index].allocation_localized;
output_file[output_index].curr_mode_enable = output_file[output_index].mode_enable;
if(output_file[output_index].curr_cnt == 1)
{
output_file[output_index].cc_file[cc_index].file[0].status = BLOCK_IDLE;
output_file[output_index].cc_file[cc_index].file[0].type = USER_DATA_TYPE;
output_file[output_index].cc_file[cc_index].file[0].index = FIRST__WORD;
output_file[output_index].cc_file[cc_index].file[0].layer_cnt = output_file[output_index].layer_cnt;
output_file[output_index].cc_file[cc_index].file[1].status = DISABLED;
output_file[output_index].cc_file[cc_index].file[1].index = 0;
output_file[output_index].cc_file[cc_index].file[1].redundancy_version = 1;
output_file[output_index].total_layer_cnt = output_file[output_index].cc_file[cc_index].file[0].layer_cnt;
}
}
}
00000084 <sub_func_2>:
84: e92d0ff0 push {r4, r5, r6, r7, r8, r9, sl, fp}
88: e3520000 cmp r2, #0
8c: e24dd018 sub sp, sp, #24
90: e58d2004 str r2, [sp, #4]
94: 1a000069 bne 240 <sub_func_2+0x1bc>
98: e3a03d61 mov r3, #6208 ; 0x1840
9c: e30dc0c0 movw ip, #53440 ; 0xd0c0
a0: e340c001 movt ip, #1
a4: e3002000 movw r2, #0
a8: e0010193 mul r1, r3, r1
ac: e3402000 movt r2, #0
b0: e3067490 movw r7, #25744 ; 0x6490
b4: e3068488 movw r8, #25736 ; 0x6488
b8: e3a0b008 mov fp, #8
bc: e3066498 movw r6, #25752 ; 0x6498
c0: e02c109c mla ip, ip, r0, r1
c4: e082c00c add ip, r2, ip
c8: e28c3b19 add r3, ip, #25600 ; 0x6400
cc: e08c4007 add r4, ip, r7
d0: e5d39083 ldrb r9, [r3, #131] ; 0x83
d4: e08c5006 add r5, ip, r6
d8: e5d3a087 ldrb sl, [r3, #135] ; 0x87
dc: e5c3b081 strb fp, [r3, #129] ; 0x81
e0: e5c39085 strb r9, [r3, #133] ; 0x85
e4: e2833080 add r3, r3, #128 ; 0x80
e8: e7cca008 strb sl, [ip, r8]
ec: e5d4a004 ldrb sl, [r4, #4]
f0: e7cca007 strb sl, [ip, r7]
f4: e5d47005 ldrb r7, [r4, #5]
f8: e5c47001 strb r7, [r4, #1]
fc: e7dc6006 ldrb r6, [ip, r6]
100: e5d5c001 ldrb ip, [r5, #1]
104: e5c56002 strb r6, [r5, #2]
108: e5c5c003 strb ip, [r5, #3]
10c: e5d4c002 ldrb ip, [r4, #2]
110: e5c4c003 strb ip, [r4, #3]
114: e5d33005 ldrb r3, [r3, #5]
118: e3530001 cmp r3, #1
11c: 1a000047 bne 240 <sub_func_2+0x1bc>
120: e30dc0c0 movw ip, #53440 ; 0xd0c0
124: e30db0c0 movw fp, #53440 ; 0xd0c0
128: e1a0700c mov r7, ip
12c: e7dfc813 bfi ip, r3, #16, #16
130: e1a05007 mov r5, r7
134: e1a0900b mov r9, fp
138: e02c109c mla ip, ip, r0, r1
13c: e1a04005 mov r4, r5
140: e1a0a00b mov sl, fp
144: e7df9813 bfi r9, r3, #16, #16
148: e7dfb813 bfi fp, r3, #16, #16
14c: e1a06007 mov r6, r7
150: e7dfa813 bfi sl, r3, #16, #16
154: e58dc008 str ip, [sp, #8]
158: e7df6813 bfi r6, r3, #16, #16
15c: e1a0c004 mov ip, r4
160: e7df4813 bfi r4, r3, #16, #16
164: e02b109b mla fp, fp, r0, r1
168: e7df5813 bfi r5, r3, #16, #16
16c: e0291099 mla r9, r9, r0, r1
170: e7df7813 bfi r7, r3, #16, #16
174: e7dfc813 bfi ip, r3, #16, #16
178: e0261096 mla r6, r6, r0, r1
17c: e0241094 mla r4, r4, r0, r1
180: e082b00b add fp, r2, fp
184: e0829009 add r9, r2, r9
188: e02a109a mla sl, sl, r0, r1
18c: e28bbc65 add fp, fp, #25856 ; 0x6500
190: e58d600c str r6, [sp, #12]
194: e2899c65 add r9, r9, #25856 ; 0x6500
198: e3a06005 mov r6, #5
19c: e58d4010 str r4, [sp, #16]
1a0: e59d4008 ldr r4, [sp, #8]
1a4: e0251095 mla r5, r5, r0, r1
1a8: e5cb3000 strb r3, [fp]
1ac: e082a00a add sl, r2, sl
1b0: e59db00c ldr fp, [sp, #12]
1b4: e5c96001 strb r6, [r9, #1]
1b8: e59d6004 ldr r6, [sp, #4]
1bc: e28aac65 add sl, sl, #25856 ; 0x6500
1c0: e58d5014 str r5, [sp, #20]
1c4: e0271097 mla r7, r7, r0, r1
1c8: e0825004 add r5, r2, r4
1cc: e30d40c0 movw r4, #53440 ; 0xd0c0
1d0: e02c109c mla ip, ip, r0, r1
1d4: e0855008 add r5, r5, r8
1d8: e7df4813 bfi r4, r3, #16, #16
1dc: e5ca6002 strb r6, [sl, #2]
1e0: e5d59003 ldrb r9, [r5, #3]
1e4: e082600b add r6, r2, fp
1e8: e59db014 ldr fp, [sp, #20]
1ec: e0201094 mla r0, r4, r0, r1
1f0: e2866c65 add r6, r6, #25856 ; 0x6500
1f4: e59d1010 ldr r1, [sp, #16]
1f8: e306a53c movw sl, #25916 ; 0x653c
1fc: e0827007 add r7, r2, r7
200: e2877c65 add r7, r7, #25856 ; 0x6500
204: e082c00c add ip, r2, ip
208: e5c69003 strb r9, [r6, #3]
20c: e59d6004 ldr r6, [sp, #4]
210: e28ccc65 add ip, ip, #25856 ; 0x6500
214: e082500b add r5, r2, fp
218: e0820000 add r0, r2, r0
21c: e0824001 add r4, r2, r1
220: e085500a add r5, r5, sl
224: e0808008 add r8, r0, r8
228: e7c4600a strb r6, [r4, sl]
22c: e5c56005 strb r6, [r5, #5]
230: e5c73050 strb r3, [r7, #80] ; 0x50
234: e5dc3003 ldrb r3, [ip, #3]
238: e287704c add r7, r7, #76 ; 0x4c
23c: e5c83007 strb r3, [r8, #7]
240: e28dd018 add sp, sp, #24
244: e8bd0ff0 pop {r4, r5, r6, r7, r8, r9, sl, fp}
248: e12fff1e bx lr
最后一部分,我的编译选项是:
# Compile options.
C_OPTS = -Wall \
-std=gnu99 \
-fgnu89-inline \
-Wcast-align \
-Werror=uninitialized \
-Werror=maybe-uninitialized \
-Werror=overflow \
-mcpu=cortex-a15 \
-mtune=cortex-a15 \
-mabi=aapcs \
-mfpu=neon \
-ftree-vectorize \
-ftree-slp-vectorize \
-ftree-vectorizer-verbose=4 \
-mfloat-abi=hard \
-O3 \
-flto \
-marm \
-ffat-lto-objects \
-fno-gcse \
-fno-strict-aliasing \
-fno-delete-null-pointer-checks \
-fno-strict-overflow \
-fuse-linker-plugin \
-falign-functions=4 \
-falign-loops=4 \
-falign-labels=4 \
-falign-jumps=4
更新
注意:我删除了结构定义,因为与我自己的程序版本存在差异。它实际上是一个巨大的结构,完全放在这里效率不高。
正如建议的那样,我摆脱了-fno-gcse,生成的asm并不像以前那么大。
如果没有-fno-gcse,sub_func_1会生成与上面相同的代码。
对于sub_func_2:
00000084 <sub_func_2>:
84: e3520000 cmp r2, #0
88: e92d0070 push {r4, r5, r6}
8c: 1a000030 bne 154 <sub_func_2+0xd0>
90: e30d30c0 movw r3, #53440 ; 0xd0c0
94: e3a06008 mov r6, #8
98: e3403001 movt r3, #1
9c: e0030093 mul r3, r3, r0
a0: e3a00d61 mov r0, #6208 ; 0x1840
a4: e0213190 mla r1, r0, r1, r3
a8: e59f30ac ldr r3, [pc, #172] ; 15c <sub_func_2+0xd8>
ac: e0831001 add r1, r3, r1
b0: e2813b19 add r3, r1, #25600 ; 0x6400
b4: e5d34083 ldrb r4, [r3, #131] ; 0x83
b8: e1a00003 mov r0, r3
bc: e5d35087 ldrb r5, [r3, #135] ; 0x87
c0: e5c36081 strb r6, [r3, #129] ; 0x81
c4: e5c34085 strb r4, [r3, #133] ; 0x85
c8: e3064488 movw r4, #25736 ; 0x6488
cc: e2833080 add r3, r3, #128 ; 0x80
d0: e7c15004 strb r5, [r1, r4]
d4: e5d05094 ldrb r5, [r0, #148] ; 0x94
d8: e0844006 add r4, r4, r6
dc: e7c15004 strb r5, [r1, r4]
e0: e5d04095 ldrb r4, [r0, #149] ; 0x95
e4: e5d0c092 ldrb ip, [r0, #146] ; 0x92
e8: e5c04091 strb r4, [r0, #145] ; 0x91
ec: e3064498 movw r4, #25752 ; 0x6498
f0: e7d15004 ldrb r5, [r1, r4]
f4: e5c0c093 strb ip, [r0, #147] ; 0x93
f8: e5d04099 ldrb r4, [r0, #153] ; 0x99
fc: e5c0509a strb r5, [r0, #154] ; 0x9a
100: e5c0409b strb r4, [r0, #155] ; 0x9b
104: e5d33005 ldrb r3, [r3, #5]
108: e3530001 cmp r3, #1
10c: 1a000010 bne 154 <sub_func_2+0xd0>
110: e281cc65 add ip, r1, #25856 ; 0x6500
114: e3a06005 mov r6, #5
118: e2810b19 add r0, r1, #25600 ; 0x6400
11c: e1a0500c mov r5, ip
120: e5cc3000 strb r3, [ip]
124: e1a0400c mov r4, ip
128: e5cc6001 strb r6, [ip, #1]
12c: e5cc2002 strb r2, [ip, #2]
130: e5d0608b ldrb r6, [r0, #139] ; 0x8b
134: e5cc6003 strb r6, [ip, #3]
138: e306c53c movw ip, #25916 ; 0x653c
13c: e7c1200c strb r2, [r1, ip]
140: e5c52041 strb r2, [r5, #65] ; 0x41
144: e285503c add r5, r5, #60 ; 0x3c
148: e5c43050 strb r3, [r4, #80] ; 0x50
14c: e284404c add r4, r4, #76 ; 0x4c
150: e5c0608f strb r6, [r0, #143] ; 0x8f
154: e8bd0070 pop {r4, r5, r6}
158: e12fff1e bx lr
15c: 00000000 .word 0x00000000
答案 0 :(得分:7)
TL:DR :无法重现那个疯狂的编译器输出。也许周围的代码+ LTO做到了吗?
我确实有改进代码的建议:请参阅下面有关复制整个结构而不是复制许多个别成员的内容。
您链接的问题是直接通过全局指针访问值类型全局。在ARM上,它需要多个指令或来自附近常量的负载才能将任意32位指针放入寄存器,传递指针比使每个函数直接引用全局更好。
请参阅Godbolt Compiler Explorer(ARM gcc 4.8.2 -O3)
上的此示例struct example {
int a, b, c;
} global_example;
int load_global(void) { return global_example.c; }
movw r3, #:lower16:global_example @ tmp113,
movt r3, #:upper16:global_example @ tmp113,
ldr r0, [r3, #8] @, global_example.c
bx lr @
int load_pointer(struct example *p) { return p->c; }
ldr r0, [r0, #8] @, p_2(D)->c
bx lr @
(显然gcc在使用val作为函数args传递结构时非常糟糕,请参阅godbolt链接上byval(struct example by_val)
的代码。)
更糟糕的是,如果你有一个全局指针:首先你必须加载指针的值,然后另一个加载来取消引用它。这是您链接的问题中讨论的间接开销。如果两个加载都在缓存中丢失,则您需要两次支付往返延迟。在第一次加载完成之前,第二个加载的加载地址不可用,因此即使在无序CPU上也不能对这些内存请求进行流水线操作。
如果您已将指针作为arg,则它将位于寄存器中。取消引用它与从全局加载相同。 (但更好的是,因为您不需要自己将全球地址输入注册表。)
我无法在Godbolt上使用ARM gcc 4.8.2或使用ARM gcc 5.2.1在本地重现您的大量asm输出。但是,我没有使用LTO,因为我没有完整的测试程序。
我只能看到稍微大一点的代码来做一些索引数学。
bfi
is Bitfield Insert。我认为144: e7df9813 bfi r9, r3, #16, #16
设置r9
的上半部分= r3
的低半部分。我不明白这是怎么回事,mla
(整数多累积)很有意义。除-ftree-vectorize
的反常结果外,我所能想到的可能是-fno-gcse
对您测试的gcc版本产生了非常糟糕的影响。
它是否正在操纵将要存储的常量?您实际发布的代码#define
将所有内容都归结为0,gcc利用了这些代码。 (它还利用了1
在寄存器中已经有curr_cnt == 1
的事实,并存储了second_file_ptr->redundancy_version = 1;
的寄存器。 ARM没有str [mem], immediate
或x86&#39; mov [mem], imm
之类的东西。
如果您的编译器输出来自具有这些常量的不同值的代码,则编译器将执行更多工作来存储不同的内容。
不幸的是,gcc很难将狭窄的商店合并到一个更大的商店(长期错过优化错误)。对于x86,clang在至少一种情况下执行此操作,存储0x0100
(256)而不是0和1.(通过将编译器翻转到clang 3.7.1或其他内容来检查godbolt,并删除ARM- gcc使用的特定编译器args。There's a mov word ptr \[rsi\], 256
mov BYTE PTR [rsi], 0 # *first_file_ptr_23(D).status,
mov BYTE PTR [rsi+1], 1 # *first_file_ptr_23(D).type,
如果您仔细安排了结构,那么在此功能中复制4B块的机会会更多。
curr
而不是curr
,而不是curr_size
和size
,也可能有两个相同的子结构。但是,您可能必须声明它packed
以避免在子结构之后填充。您的两组成员的顺序完全相同,这样可以防止编译器在执行大量任务时进行大量的块复制。
struct output_s_optimized {
struct __attribute__((packed)) stuff {
unsigned char cnt,
mode,
type,
size,
allocation_type,
allocation_localized,
mode_enable;
} curr; // 7B
unsigned char curr_id; // no non-curr id?
struct stuff non_curr;
unsigned char layer_cnt;
// Another 8 byte boundary here
unsigned char total_layer_cnt;
struct cc_file_s cc_file[128];
};
void foo(struct output_s_optimized *p) {
p->curr_id = 0;
p->non_curr = p->curr;
}
void bar(struct output_s_optimized *output_ptr) {
output_ptr->curr_id = 0;
output_ptr->curr.cnt = output_ptr->non_curr.cnt;
output_ptr->curr.mode = output_ptr->non_curr.mode;
output_ptr->curr.type = output_ptr->non_curr.type;
output_ptr->curr.size = output_ptr->non_curr.size;
output_ptr->curr.allocation_type = output_ptr->non_curr.allocation_type;
output_ptr->curr.allocation_localized = output_ptr->non_curr.allocation_localized;
output_ptr->curr.mode_enable = output_ptr->non_curr.mode_enable;
}
gcc 4.8.2 compiles foo()
to three copies:byte,2B和4B,甚至在ARM上。它将bar()
编译为8个1B副本,x86上的clang-3.8也是如此。因此,复制整个结构可以帮助您的编译器(以及确保要复制的数据在两个位置以相同的顺序排列)。
您可以使用-fverbose-asm
对每一行发表评论。对于x86,gcc 6.1 -O3
的编译器输出在版本之间非常相似,正如您在Godbolt Compiler Explorer上看到的那样。 x86寻址模式可以直接索引全局变量,所以你会看到像
movzx edi, BYTE PTR [rcx+10] # *output_ptr_7(D)._mode
# where rcx is the output_ptr arg, used directly
VS
movzx ecx, BYTE PTR output_file[rdi+10] # output_file[output_index_7(D)]._mode
# where rdi = output_index * 1297 (sizeof(output_file[0])), calculated once at the start
(gcc显然并不关心每条指令都有4B位移作为寻址模式的一部分,但这是一个ARM问题所以我不会在代码大小和insn计数之间进行权衡与x86&x #39;可变长度的insn。)
答案 1 :(得分:1)
在广泛的(架构不可知)术语中,这是您的指示:
global_structure_pointer-&gt; field = value;
global_structure_pointer
的值加载到寻址寄存器中。field
表示的偏移量添加到寻址寄存器。value
存储到寻址寄存器寻址的存储单元中。global_structure [index] .field = value;
global_structure
的地址加载到寻址寄存器中。index
的值加载到算术寄存器中。global_structure
的大小。value
存储到寻址寄存器寻址的存储单元中。你的困惑似乎是由于对什么&#34;直接访问&#34;的误解。实际上是。
此 是直接访问:
global_structure.field = value;
您认为直接访问实际上是索引访问。