我尝试使用多处理从sklearn(在这种情况下为高斯混合模式)中对分类器进行并行训练,与顺序运行相比,我得到了更糟糕的分类器。此外,每次训练后结果都不同,就好像代码不是线程安全的。任何人都可以解释我发生了什么事吗?这是代码,最后是线程函数:
nrProc = 8
semaphore = Semaphore(nrProc)
m = Manager()
models = m.list()
modelsOut = m.list()
processes = []
cnt = 0
for event_label in data_positive:
models.append(mixture.GMM(**classifier_params))
models.append(mixture.GMM(**classifier_params))
for event_label in data_positive:
if classifier_method == 'gmm':
processes.append(Process(target=trainProcess, args=(models[cnt], data_positive[event_label], semaphore, modelsOut)))
cnt = cnt + 1
processes.append(Process(target=trainProcess, args=(models[cnt], data_negative[event_label], semaphore, modelsOut)))
cnt = cnt + 1
else:
raise ValueError("Unknown classifier method ["+classifier_method+"]")
for proc in processes:
proc.start()
for proc in processes:
proc.join()
cnt = 0
for event_label in data_positive:
model_container['models'][event_label] = {}
model_container['models'][event_label]['positive'] = modelsOut[cnt]
cnt = cnt + 1
model_container['models'][event_label]['negative'] = modelsOut[cnt]
cnt = cnt + 1
def trainProcess(model, data, semaphore, modelsOut):
semaphore.acquire()
modelsOut.append(model.fit(data))
semaphore.release()
return 0
答案 0 :(得分:0)
因此解决方案是使用sklearn中的clone函数,它执行估算器的深层复制。