我想制作分割标签和功能的数据,因为需要tf.nn.softmax_cross_entropy_with_logits。
queue = tf.RandomShuffleQueue(
capacity=capacity,
min_after_dequeue=min_after_dequeue,
dtypes=[tf.float32],
shapes=[[n_input+1]] #
)
制作队列并放置标签和功能。
之后我应该为成本函数划分标签和功能。但是怎么做?
谢谢
import tensorflow as tf
import numpy as np
# Parameters
learning_rate = 0.003
training_epochs = 30
batch_size = 2
display_step = 1
min_after_dequeue = 5
capacity = 16246832
# Network Parameters
# feature size
n_input = 199
# 1st layer num features
n_hidden_1 = 150
# 2nd layer num features
n_hidden_2 = 100
# 3rd layer num features
n_hidden_3 = 50
# 4th layer num features
n_hidden_4 = 30
#class
n_classes = 3
#read csv, 0 index is label
filename_queue = tf.train.string_input_producer(["data.csv"])
record_default = [[0.0] for x in xrange(200)] # with a label and 199 features
#testfile
reader = tf.TextLineReader()
#file read
key, value = reader.read(filename_queue)
#decode
features = tf.decode_csv(value, record_defaults= record_default)
featurespack = tf.pack(features)
#xy = tf.map_fn(fn = lambda f: [f[1:],f[0]], elems=featurespack)
#for the batch
queue = tf.RandomShuffleQueue(
capacity=capacity,
min_after_dequeue=min_after_dequeue,
dtypes=[tf.float32],
shapes=[[n_input+1]]
)
#enqueue
enqueue_op = queue.enqueue(featurespack)
#dequeue
inputs = queue.dequeue_many(batch_size)
#threading
qr = tf.train.QueueRunner(queue, [enqueue_op] * 4)
#features n=199
x = tf.placeholder("float", [None, n_input])
# class 0,1,2
y = tf.placeholder("float", [None, n_classes])
#dropout
dropout_keep_prob = tf.placeholder("float")
# Create model
def multilayer_perceptron(_X, _weights, _biases, _keep_prob):
layer_1 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])), _keep_prob)
layer_2 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])), _keep_prob)
layer_3 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(layer_2, _weights['h3']), _biases['b3'])), _keep_prob)
layer_4 = tf.nn.dropout(tf.nn.relu(tf.add(tf.matmul(layer_3, _weights['h4']), _biases['b4'])), _keep_prob)
return tf.sigmoid(tf.matmul(layer_4, _weights['out']) + _biases['out'])
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=0.1)),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=0.1)),
'h3': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_3], stddev=0.1)),
'h4': tf.Variable(tf.random_normal([n_hidden_3, n_hidden_4], stddev=0.1)),
'out': tf.Variable(tf.random_normal([n_hidden_4, n_classes], stddev=0.1))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'b3': tf.Variable(tf.random_normal([n_hidden_3])),
'b4': tf.Variable(tf.random_normal([n_hidden_4])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases, dropout_keep_prob)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
# optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.8).minimize(cost) # Adam Optimizer
# Initializing the variables
print "1"
with tf.Session() as sess:
#init
tf.initialize_all_variables().run
#what is
coord = tf.train.Coordinator()
#queue start what is
tf.train.start_queue_runners (coord=coord)
#i dont know well
enqueue_threads = qr.create_threads(sess, coord=coord, start=True)
print sess.run(features)
print sess.run(features)
print sess.run(features)
print sess.run(features)
print sess.run(features)
#
#print sess.run(feature)
#Training cycle
for epoch in range(training_epochs):
print epoch
avg_cost = 0.
# Loop over all batches
for i in range(10):
print i
if coord.should_stop():
break
#get inputs
inputs_value = sess.run(inputs)
#THIS IS NOT WORK
batch_xs = np.ndarray([x[1:] for x in inputs_value])
batch_ys = np.ndarray([x[0] for x in inputs_value])
print 'batch', len(batch_ys), len(batch_xs)
#batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Fit training using batch data
#optimzierm put x and y
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, dropout_keep_prob: 0.5})
# Compute average loss
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, dropout_keep_prob: 0.5})/batch_size
# Display logs per epoch step
if epoch % display_step == 0:
print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
#print ("Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels, dropout_keep_prob: 1.}))
coord.request_stop ()
coord.join (enqueue_threads)
print ("Optimization Finished!")