我有以下单一的任务令我感到困惑。我必须实现一个将进程分配到处理器的遗传算法。更具体地说,问题如下:
“你有一个在并行处理器系统中计算的程序。该程序由需要在多个处理器上分配的N个进程组成(其中n小于N)。整个过程中的过程可能非常耗时,因此最佳做法是将需要相互通信的过程分配给同一个处理器。
为了减少进程之间的通信时间,您可以将这些进程分配给同一个处理器,但这会否定每个处理器需要为整个进程做出贡献的并行处理理念。
考虑以下事项:假设Cij是进程i和进程j之间的通信总量。假设每个进程需要相同数量的计算能力,以便可以通过向处理器分配相同数量的进程来处理处理过程的限制。使用遗传算法将N个进程分配给n个处理器。“
以上大致翻译了问题的描述。现在我有以下问题困扰我。
1)为了使遗传算法运行,最好的可行解决方案是什么。我有他们背后的理论,我推断出你需要一个最好的解决方案来检查每一代人口。
2)如何正确设计整个问题以便由程序处理。
我计划在Java中实现这一点,但欢迎使用其他编程语言的任何其他建议。
答案 0 :(得分:0)
老兄住了。或者El Duderino如果你没有进入整个简洁的事情。 您所问的实际上是一个两部分问题,但遗传算法部分可以在概念中轻松说明。我发现给一个基本的开始可能会有所帮助,但这个问题作为一个“整体”在这里解决的问题太复杂了。
正如您所注意到的,遗传算法(GA)可以用作优化器。为了将GA应用于流程执行计划,您需要能够对执行计划进行评分,然后克隆并改变最佳计划。 GA通过运行多个计划,克隆最好的计划,然后改变其中一些轻微来查看后代(克隆)计划是否得到改善或恶化。
在这个例子中,我创建了一个包含100个随机整数的数组。每个Integer都是一个要运行的“进程”,Integer的值是运行该单个进程的“成本”。
List<Integer> processes = new ArrayList<Integer>();
然后将这些流程添加到ExecutionPlan
,即List<List<Integer>>
。这个整数列表将用于代表4个处理器进行25轮处理:
class ExecutionPlan implements Comparable<ExecutionPlan> {
List<List<Integer>> plan;
int cost;
执行计划的总cost
将通过获取每轮最高流程成本(最大整数)并汇总所有轮次的成本来计算。因此,优化器的目标是在4个“处理器”上将最初的100个整数(进程)分配到25轮“处理”中,以使总成本尽可能低。
// make 10 execution plans of 25 execution rounds running on 4 processors;
List<ExecutionPlan> executionPlans = createAndIntializePlans(processes);
// Loop on generationCount
for ( int generation = 0; generation < GENERATIONCOUNT; ++generation) {
computeCostOfPlans(executionPlans);
// sort plans by cost
Collections.sort(executionPlans);
// print execution plan costs
System.out.println(generation + " = " + executionPlans);
// clone 5 better plans over 5 worse plans
// i.e., kill off the least fit and reproduce the best fit.
cloneBetterPlansOverWorsePlans(executionPlans);
// mutate 5 cloned plans
mutateClones(executionPlans);
}
当程序运行时,成本最初是随机确定的,但随着每一代的改进。如果你运行1000代并绘制结果,典型的运行将如下所示:
GA的目的是Optimize
或尝试确定最佳解决方案。它可以应用于您的问题的原因是您的ExecutionPlan
可以被评分,克隆和变异。因此,成功的道路是将思想问题分开。首先,弄清楚如何制定一个执行计划,可以对在假定的硬件集上实际运行它的成本进行评分。添加rountines以克隆和变异ExecutionPlan
。一旦你将它插入这个GA示例。祝你好运,保持冷静。
public class Optimize {
private static int GENERATIONCOUNT = 1000;
private static int PROCESSCOUNT = 100;
private static int MUTATIONCOUNT = PROCESSCOUNT/10;
public static void main(String...strings) {
new Optimize().run();
}
// define an execution plan as 25 runs on 4 processors
class ExecutionPlan implements Comparable<ExecutionPlan> {
List<List<Integer>> plan;
int cost;
public ExecutionPlan(List<List<Integer>> plan) {
this.plan = plan;
}
@Override
public int compareTo(ExecutionPlan o) {
return cost-o.cost;
}
@Override
public String toString() {
return Integer.toString(cost);
}
}
private void run() {
// make 100 processes to be completed
List<Integer> processes = new ArrayList<Integer>();
// assign them a random cost between 1 and 100;
for ( int index = 0; index < PROCESSCOUNT; ++index) {
processes.add( new Integer((int)(Math.random() * 99.0)+1));
}
// make 10 execution plans of 25 execution rounds running on 4 processors;
List<ExecutionPlan> executionPlans = createAndIntializePlans(processes);
// Loop on generationCount
for ( int generation = 0; generation < GENERATIONCOUNT; ++generation) {
computeCostOfPlans(executionPlans);
// sort plans by cost
Collections.sort(executionPlans);
// print execution plan costs
System.out.println(generation + " = " + executionPlans);
// clone 5 better plans over 5 worse plans
cloneBetterPlansOverWorsePlans(executionPlans);
// mutate 5 cloned plans
mutateClones(executionPlans);
}
}
private void mutateClones(List<ExecutionPlan> executionPlans) {
for ( int index = 0; index < executionPlans.size()/2; ++index) {
ExecutionPlan execution = executionPlans.get(index);
// mutate 10 different location swaps, maybe the plan improves
for ( int mutationCount = 0; mutationCount < MUTATIONCOUNT ; ++mutationCount) {
int location1 = (int)(Math.random() * 100.0);
int location2 = (int)(Math.random() * 100.0);
// swap two locations
Integer processCostTemp = execution.plan.get(location1/4).get(location1%4);
execution.plan.get(location1/4).set(location1%4, execution.plan.get(location2/4).get(location2%4));
execution.plan.get(location2/4).set(location2%4, processCostTemp);
}
}
}
private void cloneBetterPlansOverWorsePlans(List<ExecutionPlan> executionPlans) {
for ( int index = 0; index < executionPlans.size()/2; ++index) {
ExecutionPlan execution = executionPlans.get(index);
List<List<Integer>> clonePlan = new ArrayList<List<Integer>>();
for ( int roundNumber = 0; roundNumber < 25; ++roundNumber) {
clonePlan.add( new ArrayList<Integer>(execution.plan.get(roundNumber)) );
}
executionPlans.set( index + executionPlans.size()/2, new ExecutionPlan(clonePlan) );
}
}
private void computeCostOfPlans(List<ExecutionPlan> executionPlans) {
for ( ExecutionPlan execution: executionPlans) {
execution.cost = 0;
for ( int roundNumber = 0; roundNumber < 25; ++roundNumber) {
// cost of a round is greatest "communication time".
List<Integer> round = execution.plan.get(roundNumber);
int roundCost = round.get(0)>round.get(1)?round.get(0):round.get(1);
roundCost = execution.cost>round.get(2)?roundCost:round.get(2);
roundCost = execution.cost>round.get(3)?roundCost:round.get(3);
// add all the round costs' to determine total plan cost
execution.cost += roundCost;
}
}
}
private List<ExecutionPlan> createAndIntializePlans(List<Integer> processes) {
List<ExecutionPlan> executionPlans = new ArrayList<ExecutionPlan>();
for ( int planNumber = 0; planNumber < 10; ++planNumber) {
// randomize the processes for this plan
Collections.shuffle(processes);
// and make the plan
List<List<Integer>> currentPlan = new ArrayList<List<Integer>>();
for ( int roundNumber = 0; roundNumber < 25; ++roundNumber) {
List<Integer> round = new ArrayList<Integer>();
round.add(processes.get(4*roundNumber+0));
round.add(processes.get(4*roundNumber+1));
round.add(processes.get(4*roundNumber+2));
round.add(processes.get(4*roundNumber+3));
currentPlan.add(round);
}
executionPlans.add(new ExecutionPlan(currentPlan));
}
return executionPlans;
}
}