我编写了一个自定义似然函数,该函数适用于集成标记重新捕获和遥测数据的多数据模型(sensu Royle等人,2013年生态学与进化方法)。似然函数被设计为在是否以及在不同似然分量中为不同线性模型指定多少协变量方面是灵活的,这是由作为函数参数提供的值确定的(即,数据矩阵" detcovs"和& #34; dencovs"在我的代码中)。当我直接将其提供给优化函数(例如,optim或nlm)时,似然函数起作用,但是对于bbmle包中的mle2函数不起作用。我的问题是我不断遇到以下错误:"' start'中的一些命名参数不是指定的对数似然函数的参数"。这是我第一次尝试编写自定义似然函数,因此我确信存在一些我不知道的通用编码约定,这使得这些任务更有效,并且可以修改为mle2函数。下面是我的似然函数,创建凝视值对象的代码,以及调用mle2函数的代码。任何有关如何解决错误问题的建议以及编写清洁函数的一般注释都是值得欢迎的。非常感谢提前。
编辑:根据要求,我简化了似然函数,并提供了代码来模拟模型可以适合的可重现数据。模拟代码中包含2个自定义函数以及栅格包中栅格函数的使用。希望我已经充分简化了所有内容以使其他人能够排除故障。再次,非常感谢你的帮助!
贾里德
似然函数:
let launchedByShortcut = launchOptions?[UIApplicationLaunchOptionsShortcutItemKey] != nil
if (!launchedByShortcut) {
// the app wasn't launched via a shortcut
}
数据模拟代码:
CSCR.RSF.intlik2.EXAMPLE <- function(alpha0,sigma,alphas=NULL,betas=NULL,n0,yscr=NULL,K=NULL,X=X,trapcovs=NULL,Gden=NULL,Gdet=NULL,ytel=NULL,stel=NULL,
dencovs=NULL,detcovs=NULL){
#
# this version of the code handles a covariate on log(Density). This is starting value 5
#
# start = vector of starting values
# yscr = nind x ntraps encounter matrix
# K = number of occasions
# X = trap locations
# Gden = matrix with grid cell coordinates for density raster
# Gdet = matrix with gride cell coordinates for RSF raster
# dencovs = all covariate values for all nGden pixels in density raster
# trapcovs = covariate value at trap locations
# detcovs = all covariate values for all nGrsf pixels in RSF raster
# ytel = nguys x nGdet matrix of telemetry fixes in each nGdet pixels
# stel = home range center of telemetered individuals, IF you wish to estimate it. Not necessary
# alphas = starting values for RSF/detfn coefficients excluding sigma and intercept
# alpha0 = starting values for RSF/detfn intercept
# sigma = starting value for RSF/detfn sigma
# betas = starting values for density function coefficients
# n0 = starting value for number of undetected individuals on log scale
#
n0 = exp(n0)
nGden = nrow(Gden)
D = e2dist(X,Gden)
nGdet <- nrow(Gdet)
alphas = alphas
loglam = alpha0 -(1/(2*sigma*sigma))*D*D + as.vector(trapcovs%*%alphas) # ztrap recycled over nG
psi = exp(as.vector(dencovs%*%betas))
psi = psi/sum(psi)
probcap = 1-exp(-exp(loglam))
#probcap = (exp(theta0)/(1+exp(theta0)))*exp(-theta1*D*D)
Pm = matrix(NA,nrow=nrow(probcap),ncol=ncol(probcap))
ymat = yscr
ymat = rbind(yscr,rep(0,ncol(yscr)))
lik.marg = rep(NA,nrow(ymat))
for(i in 1:nrow(ymat)){
Pm[1:length(Pm)] = (dbinom(rep(ymat[i,],nGden),rep(K,nGden),probcap[1:length(Pm)],log=TRUE))
lik.cond = exp(colSums(Pm))
lik.marg[i] = sum( lik.cond*psi )
}
nv = c(rep(1,length(lik.marg)-1),n0)
part1 = lgamma(nrow(yscr)+n0+1) - lgamma(n0+1)
part2 = sum(nv*log(lik.marg))
out = -1*(part1+ part2)
lam = t(exp(a0 - (1/(2*sigma*sigma))*t(D2)+ as.vector(detcovs%*%alphas)))# recycle zall over all ytel guys
# lam is now nGdet x nG!
denom = rowSums(lam)
probs = lam/denom # each column is the probs for a guy at column [j]
tel.loglik = -1*sum( ytel*log(probs) )
out = out + tel.loglik
out
}
指定起始值并调用mle2函数:
library(raster)
library(bbmle)
e2dist <- function (x, y){
i <- sort(rep(1:nrow(y), nrow(x)))
dvec <- sqrt((x[, 1] - y[i, 1])^2 + (x[, 2] - y[i, 2])^2)
matrix(dvec, nrow = nrow(x), ncol = nrow(y), byrow = F)
}
spcov <- function(R) {
v <- sqrt(nrow(R))
D <- as.matrix(dist(R))
V <- exp(-D/2)
cov1 <- t(chol(V)) %*% rnorm(nrow(R))
Rd <- as.data.frame(R)
colnames(Rd) <- c("x", "y")
Rd$C <- as.numeric((cov1 - mean(cov1)) / sd(cov1))
return(Rd)
}
set.seed(1234)
co <- seq(0.3, 0.7, length=5)
X <- cbind(rep(co, each=5),
rep(co, times=5))
B <- 10
co <- seq(0, 1, length=B)
Z <- cbind(rep(co, each=B), rep(co, times=B))
dencovs <- cbind(spcov(Z),spcov(Z)[,3]) # ordered as reading raster image from left to right, bottom to top
dimnames(dencovs)[[2]][3:4] <- c("dencov1","dencov2")
denr.list <- vector("list",2)
for(i in 1:2){
denr.list[[i]] <- raster(
list(x=seq(0,1,length=10),
y=seq(0,1,length=10),
z=t(matrix(dencovs[,i+2],10,10,byrow=TRUE)))
)
}
B <- 20
co <- seq(0, 1, length=B)
Z <- cbind(rep(co, each=B), rep(co, times=B))
detcovs <- cbind(spcov(Z),spcov(Z)[,3]) # ordered as reading raster image from left to right, bottom to top
dimnames(detcovs)[[2]][3:4] <- c("detcov1","detcov2")
detcov.raster.list <- vector("list",2)
trapcovs <- matrix(0,J,2)
for(i in 1:2){
detr.list[[i]] <- raster(
list(x=seq(0,1,length=20),
y=seq(0,1,length=20),
z=t(matrix(detcovs[,i+2],20,20,byrow=TRUE)))
)
trapcovs[,i] <- extract(detr.list[[i]],X)
}
alpha0 <- -3
sigma <- 0.15
alphas <- c(1,-1)
beta0 <- 3
betas <- c(-1,1)
pixelArea <- (dencovs$y[2] - dencovs$y[1])^2
mu <- exp(beta0 + as.matrix(dencovs[,3:4])%*%betas)*pixelArea
EN <- sum(mu)
N <- rpois(1, EN)
pi <- mu/sum(mu)
s <- dencovs[sample(1:nrow(dencovs), size=N, replace=TRUE, prob=pi),1:2]
J <- nrow(X)
K <- 10
yc <- d <- p <- matrix(NA, N, J)
D <- e2dist(s,X)
loglam <- t(alpha0 - t((1/(2*sigma*sigma))*D*D) + as.vector(trapcovs%*%alphas))
p <- 1-exp(-exp(loglam))
for(i in 1:N) {
for(j in 1:J) {
yc[i,j] <- rbinom(1, K, p[i,j])
}
}
detected <- apply(yc>0, 1, any)
yscr <- yc[detected,]
ntel <- 5
nfixes <- 100
poss.tel <- which(s[,1]>0.2 & s[,1]<0.8 & s[,2]>0.2 & s[,2]<0.8)
stel.id <- sample(poss.tel,ntel)
stel <- s[stel.id,]
ytel <- matrix(NA,ntel,nrow(detcovs))
d <- e2dist(stel,detcovs[,1:2])
lam <- t(exp(1 - t((1/(2*sigma*sigma))*d*d) + as.vector(as.matrix(detcovs[,3:4])%*%alphas)))
for(i in 1:ntel){
ytel[i,] <- rmultinom(1,nfixes,lam[i,]/sum(lam[i,]))
}