我希望这次我不会被投票。我一直在使用Python进行并行处理(2天,确切地说)。我检查了这些资源(这里显示了部分列表:
(a)http://eli.thegreenplace.net/2013/01/16/python-paralellizing-cpu-bound-tasks-with-concurrent-futures
(b)https://pythonadventures.wordpress.com/tag/processpoolexecutor/
我来了。我想做的是:
站长:
Break up the file into chunks(strings or numbers)
Broadcast a pattern to be searched to all the workers
Receive the offsets in the file where the pattern was found
工:
Receive pattern and chunk of text from the master
Compute()
Send back the offsets to the master.
我尝试使用MPI / concurrent.futures / multiprocessing实现这一点,并且已经解决了。
使用多处理模块的天真实现
import multiprocessing
filename = "file1.txt"
pat = "afow"
N = 1000
""" This is the naive string search algorithm"""
def search(pat, txt):
patLen = len(pat)
txtLen = len(txt)
offsets = []
# A loop to slide pattern[] one by one
# Range generates numbers up to but not including that number
for i in range ((txtLen - patLen) + 1):
# Can not use a for loop here
# For loops in C with && statements must be
# converted to while statements in python
counter = 0
while(counter < patLen) and pat[counter] == txt[counter + i]:
counter += 1
if counter >= patLen:
offsets.append(i)
return str(offsets).strip('[]')
""""
This is what I want
if __name__ == "__main__":
tasks = []
pool_outputs = []
pool = multiprocessing.Pool(processes=5)
with open(filename, 'r') as infile:
lines = []
for line in infile:
lines.append(line.rstrip())
if len(lines) > N:
pool_output = pool.map(search, tasks)
pool_outputs.append(pool_output)
lines = []
if len(lines) > 0:
pool_output = pool.map(search, tasks)
pool_outputs.append(pool_output)
pool.close()
pool.join()
print('Pool:', pool_outputs)
"""""
with open(filename, 'r') as infile:
for line in infile:
print(search(pat, line))
我将非常感谢任何指导,尤其是concurrent.futures。谢谢你的时间。 Valeriy帮助我加入他,我为此感谢他。
但是如果有人可以放纵我一会儿,那就是我正在为concurrent.futures工作的代码(处理我在某处看到的一个例子)
from concurrent.futures import ProcessPoolExecutor, as_completed
import math
def search(pat, txt):
patLen = len(pat)
txtLen = len(txt)
offsets = []
# A loop to slide pattern[] one by one
# Range generates numbers up to but not including that number
for i in range ((txtLen - patLen) + 1):
# Can not use a for loop here
# For loops in C with && statements must be
# converted to while statements in python
counter = 0
while(counter < patLen) and pat[counter] == txt[counter + i]:
counter += 1
if counter >= patLen:
offsets.append(i)
return str(offsets).strip('[]')
#Check a list of strings
def chunked_worker(lines):
return {0: search("fmo", line) for line in lines}
def pool_bruteforce(filename, nprocs):
lines = []
with open(filename) as f:
lines = [line.rstrip('\n') for line in f]
chunksize = int(math.ceil(len(lines) / float(nprocs)))
futures = []
with ProcessPoolExecutor() as executor:
for i in range(nprocs):
chunk = lines[(chunksize * i): (chunksize * (i + 1))]
futures.append(executor.submit(chunked_worker, chunk))
resultdict = {}
for f in as_completed(futures):
resultdict.update(f.result())
return resultdict
filename = "file1.txt"
pool_bruteforce(filename, 5)
再次感谢Valeriy和任何试图帮助我解决问题的人。
答案 0 :(得分:0)
你使用了几个参数,所以:
import multiprocessing
from functools import partial
filename = "file1.txt"
pat = "afow"
N = 1000
""" This is the naive string search algorithm"""
def search(pat, txt):
patLen = len(pat)
txtLen = len(txt)
offsets = []
# A loop to slide pattern[] one by one
# Range generates numbers up to but not including that number
for i in range ((txtLen - patLen) + 1):
# Can not use a for loop here
# For loops in C with && statements must be
# converted to while statements in python
counter = 0
while(counter < patLen) and pat[counter] == txt[counter + i]:
counter += 1
if counter >= patLen:
offsets.append(i)
return str(offsets).strip('[]')
if __name__ == "__main__":
tasks = []
pool_outputs = []
pool = multiprocessing.Pool(processes=5)
lines = []
with open(filename, 'r') as infile:
for line in infile:
lines.append(line.rstrip())
tasks = lines
func = partial(search, pat)
if len(lines) > N:
pool_output = pool.map(func, lines )
pool_outputs.append(pool_output)
elif len(lines) > 0:
pool_output = pool.map(func, lines )
pool_outputs.append(pool_output)
pool.close()
pool.join()
print('Pool:', pool_outputs)