给定平面方程,如何生成包含矩形的四个点?我只有平面方程ax + by + cz = d。
我遵循此处列出的方法Find Corners of Rectangle, Given Plane equation, height and width
#generate horizontal vector U
temp_normal=np.array([a,b,c])
temp_vertical=np.array([0,0,1])
U=np.cross(temp_normal, temp_vertical)
# for corner 3 and 4
neg_U=np.multiply([-1.0, -1.0, -1.0], U)
#generate vertical vector W
W=np.cross(temp_normal,U)
#for corner 2 and 4
neg_W=np.multiply([-1.0, -1.0, -1.0], W)
#make the four corners
#C1 = P0 + (width / 2) * U + (height / 2) * W
C1=np.sum([centroid,np.multiply(U, width_array),np.multiply(W, height_array)], axis=0)
corner1=C1.tolist()
#C2 = P0 + (width / 2) * U - (height / 2) * W
C2=np.sum([centroid,np.multiply(U, width_array),np.multiply(neg_W, height_array)], axis=0)
corner2=C2.tolist()
#C3 = P0 - (width / 2) * U + (height / 2) * W
C3=np.sum([centroid,np.multiply(neg_U, width_array),np.multiply(W, height_array)], axis=0)
corner3=C3.tolist()
#C4 = P0 - (width / 2) * U - (height / 2) * W
C4=np.sum([centroid,np.multiply(neg_U, width_array),np.multiply(neg_W, height_array)], axis=0)
self.theLw.WriteLine("C4 is " +str(type(C4))+" "+str(C4.tolist()))
corner4=C4.tolist()
corners_list.append([corner1, corner2, corner3, corner4])
答案 0 :(得分:1)
使用等式在该平面内找到一个向量。使用cross-product(第一个和normal vector to the plane)在该平面内找到第二个,垂直于第一个平面。然后添加这些向量(带+ - 符号,4种可能性)以生成4个角。
编辑:为您提供更多帮助:
两个向量的叉积返回一个垂直于两者的向量。因此,乘积b2 =(a,b,c)x(0,d / b,-d / c)是与平面相切的矢量,垂直于另一个。有了这个,你构建了一个平面[b1,b2]的正常基础。
从一个点开始,比如说(0,0,d / c),然后将b1 + b2,b1-b2,-b1 + b2,-b1-b2添加到4个角。
好的,答案是:
import numpy as np
a = 2; b = 3; c = 4; d = 5
n = np.array([a,b,c])
x1 = np.array([0,0,d/c])
x2 = np.array([0,d/b,0])
def is_equal(n,m):
return n-m < 1e-10
def is_on_the_plane(v):
return is_equal(v[0]*a + v[1]*b + v[2]*c, d)
assert is_on_the_plane(x1)
assert is_on_the_plane(x2)
# Get the normal basis
b1 = x2 - x1
b2 = np.cross(n, b1)
c1 = x1 + b1 + b2
c2 = x1 + b1 - b2
c3 = x1 - b1 + b2
c4 = x1 - b1 - b2
assert is_on_the_plane(c1)
assert is_on_the_plane(c2)
assert is_on_the_plane(c3)
assert is_on_the_plane(c4)
assert is_equal(np.dot(c1-c3, c1-x2), 0)
assert is_equal(np.dot(c2-c1, c2-c4), 0)
# etc. :
# c3 c1
#
# x1
#
# c4 c2
它实际上是一个正方形,但你肯定能找到如何使它成为一个不太具体的矩形。