正如在这个显示的小例子中,我尝试每周重新采样一个pandas数据帧:
import datetime
import pandas as pd
df = pd.DataFrame([{
'A' : datetime.datetime.now() - datetime.datetime.now(),
'B' : 2
},{
'A' : datetime.datetime.now() - datetime.datetime.now(),
'B' : 3
}])
df = df.set_index('A')
df.resample('W', how="mean")
这会引发AttributeError
:
AttributeError: 'Week' object has no attribute 'nanos'
(注意:如果我按"D"
重新采样,则问题不会发生)
如果我将索引转换为日期时间:
df.index = pd.to_datetime(df.index.values)
df.resample('W', how="mean")
重新取样也有效
问题:是否有大熊猫timedelta类型不依赖纳秒?
或者:您是否比datetime
利用timedelta
更优雅?
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/Library/Python/2.7/site-packages/pandas/core/generic.py", line 3266, in resample
return sampler.resample(self).__finalize__(self)
File "/Library/Python/2.7/site-packages/pandas/tseries/resample.py", line 98, in resample
rs = self._resample_timestamps(kind='timedelta')
File "/Library/Python/2.7/site-packages/pandas/tseries/resample.py", line 272, in _resample_timestamps
self._get_binner_for_resample(kind=kind)
File "/Library/Python/2.7/site-packages/pandas/tseries/resample.py", line 122, in _get_binner_for_resample
self.binner, bins, binlabels = self._get_time_delta_bins(ax)
File "/Library/Python/2.7/site-packages/pandas/tseries/resample.py", line 236, in _get_time_delta_bins
name=ax.name)
File "/Library/Python/2.7/site-packages/pandas/tseries/tdi.py", line 167, in __new__
closed=closed)
File "/Library/Python/2.7/site-packages/pandas/tseries/tdi.py", line 235, in _generate
index = _generate_regular_range(start, end, periods, offset)
File "/Library/Python/2.7/site-packages/pandas/tseries/tdi.py", line 895, in _generate_regular_range
stride = offset.nanos
AttributeError: 'Week' object has no attribute 'nanos'
>>> pd.__version__
'0.16.2'
>>> np.__version__
'1.10.1'
答案 0 :(得分:0)
我认为不同之处在于pandas使用numpy的datetime64而python datetime类则不同。当你打电话
df.index = pd.to_datetime(df.index.values)
您正在从您创建的datetime.datetime对象转换为重新采样的numpy.datetime64对象作为参数。