为了提取下面两个数据框之间的不匹配,我已经设法创建了一个更换不匹配的新数据框。
我现在需要的是一系列不匹配:
dfA <- structure(list(animal1 = c("AA", "TT", "AG", "CA"), animal2 = c("AA", "TB", "AG", "CA"), animal3 = c("AA", "TT", "AG", "CA")), .Names = c("animal1", "animal2", "animal3"), row.names = c("snp1", "snp2", "snp3", "snp4"), class = "data.frame")
# > dfA
# animal1 animal2 animal3
# snp1 AA AA AA
# snp2 TT TB TT
# snp3 AG AG AG
# snp4 CA CA CA
dfB <- structure(list(animal1 = c("AA", "TT", "AG", "CA"), animal2 = c("AA", "TB", "AG", "DF"), animal3 = c("AA", "TB", "AG", "DF")), .Names = c("animal1", "animal2", "animal3"), row.names = c("snp1", "snp2", "snp3", "snp4"), class = "data.frame")
#> dfB
# animal1 animal2 animal3
#snp1 AA AA AA
#snp2 TT TB TB
#snp3 AG AG AG
#snp4 CA DF DF
为了澄清不匹配,这里标记为00&#39;
# animal1 animal2 animal3
# snp1 AA AA AA
# snp2 TT TB 00
# snp3 AG AG AG
# snp4 CA 00 00
我需要以下输出:
structure(list(snpname = structure(c(1L, 2L, 2L), .Label = c("snp2", "snp4"), class = "factor"), animalname = structure(c(2L, 1L, 2L), .Label = c("animal2", "animal3"), class = "factor"), alleledfA = structure(c(2L, 1L, 1L), .Label = c("CA", "TT"), class = "factor"), alleledfB = structure(c(2L, 1L, 1L), .Label = c("DF", "TB"), class = "factor")), .Names = c("snpname", "animalname", "alleledfA", "alleledfB"), class = "data.frame", row.names = c(NA, -3L))
# snpname animalname alleledfA alleledfB
#1 snp2 animal3 TT TB
#2 snp4 animal2 CA DF
#3 snp4 animal3 CA DF
到目前为止,我一直试图从我的lapply
函数中提取其他数据,我将其用于将不匹配替换为0,但没有成功。我也尝试编写ifelse函数但没有成功。希望你们能在这里帮助我!
最终,这将针对尺寸为100K×1000的数据集运行,因此效率是专业的
答案 0 :(得分:6)
此问题有data.table
标记,所以这是我尝试使用此包。第一步是将行名转换为列,因为data.table
不喜欢这些,然后在rbind
之后转换为长格式并为每个数据集设置一个id,找到有多个唯一值的位置并转换回宽格式
library(data.table)
setDT(dfA, keep.rownames = TRUE)
setDT(dfB, keep.rownames = TRUE)
dcast(melt(rbind(dfA,
dfB,
idcol = TRUE),
id = 1:2
)[,
if(uniqueN(value) > 1L) .SD,
by = .(rn, variable)],
rn + variable ~ .id)
# rn variable 1 2
# 1: snp2 animal3 TT TB
# 2: snp4 animal2 CA DF
# 3: snp4 animal3 CA DF
答案 1 :(得分:4)
这是一个使用矩阵的array.indices的解决方案:
i.arr <- which(dfA != dfB, arr.ind=TRUE)
data.frame(snp=rownames(dfA)[i.arr[,1]], animal=colnames(dfA)[i.arr[,2]],
A=dfA[i.arr], B=dfB[i.arr])
# snp animal A B
#1 snp4 animal2 CA DF
#2 snp2 animal3 TT TB
#3 snp4 animal3 CA DF
答案 2 :(得分:3)
这可以使用{@ 1}}使用与@David Arenburg的帖子类似的方法来完成。
dplyr/tidyr