如何使用datetime加速pandas中lambda的apply方法

时间:2016-04-09 09:01:42

标签: python pandas lambda

我是熊猫新手。

我有一个非常简单的数据框,名为dlf,带有索引,两列有40k行。它按如下方式加载:

d = pd.DataFrame.from_csv(csvsLocation + 'name.csv', index_col='ID', infer_datetime_format=True)
d['LAST'] = pd.to_datetime(d['LAST'], format = '%d-%b-%y')
d['FIRST'] = pd.to_datetime(d['FIRST'], format = '%d-%b-%y')
dlf = d[['LAST', 'FIRST']]

它看起来像这样:

    LAST    FIRST
ID      
1   1997-04-17  1991-10-04
3   2009-02-13  1988-07-07
5   2009-10-24  1995-12-06
6   1996-04-31  1989-03-14

运行此apply方法需要5秒

year = 1997
dlf[str(year)] = dlf.apply(lambda row: 1*(year >= row['FIRST'].year and year <= row['LAST'].year), axis=1)

我需要加快速度,因为我打算运行数百次。

我怀疑问题在于使用lambda。

我做错了什么,和/或我怎样才能加快速度?

3 个答案:

答案 0 :(得分:4)

解决方案

您可以在两个日期列中通过dt.year访问年份:

year = 1999
df[str(year)] = 1 * ((df['FIRST'].dt.year <= year) & (df['LAST'].dt.year >= year))
print(df)

输出:

         LAST      FIRST  1999
ID                            
1  1997-04-17 1991-10-14     0
3  2009-02-13 1988-07-07     1
5  2009-10-24 1995-10-06     1
6  1996-04-30 1969-03-14     0

您还可以将布尔值保留为结果:

df[str(year)] = (df['FIRST'].dt.year <= year) & (df['LAST'].dt.year >= year)
print(df)

输出:

         LAST      FIRST   1999
ID                             
1  1997-04-17 1991-10-14  False
3  2009-02-13 1988-07-07   True
5  2009-10-24 1995-10-06   True
6  1996-04-30 1969-03-14  False

效果

测量性能总是很有趣。但测量可能很棘手。如果我们只使用4行的微小示例数据帧,事情就会慢一点:

%timeit dlf[str(year)] = dlf.apply(lambda row: 1*(year >= row['FIRST'].year and year <= row['LAST'].year), axis=1)

1000 loops, best of 3: 1.27 ms per loop


%timeit df[str(year)] = 1 * ((df['FIRST'].dt.year <= year) & (df['LAST'].dt.year >= year))

100 loops, best of 3: 1.7 ms per loop

但是让我们来看看40k行:

big = pd.concat([df] * 10000)

>>> big.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 40000 entries, 1 to 6
Data columns (total 4 columns):
LAST     40000 non-null datetime64[ns]
FIRST    40000 non-null datetime64[ns]
1999     40000 non-null bool
1997     40000 non-null int64
dtypes: bool(1), datetime64[ns](2), int64(1)
memory usage: 1.3 MB

现在我们可以看到显着的加速:

%timeit big[str(year)] = big.apply(lambda row: 1*(year >= row['FIRST'].year and year <= row['LAST'].year), axis=1)

1 loops, best of 3: 6.51 s per loop

%timeit big[str(year)] = 1 * ((big['FIRST'].dt.year <= year) & (big['LAST'].dt.year >= year))

100 loops, best of 3: 8.33 ms per loop

这大约快780倍。

答案 1 :(得分:1)

我会预先计算first_yearlast_year以简化比较:

dlf[year] = dlf[dlf['first_year'] <= year & [dlf['last_year'] >= year]

答案 2 :(得分:1)

如果我正确地理解了您的问题,那么您将添加多个列(多年),这是一个通用矢量化解决方案,因此您无需重复100次:

years = [1997, 2016, 2000, 1989]
years = sorted(years)

dfy = pd.DataFrame(pd.Series(years * len(df)).reshape(len(df),len(years)), columns=years)

df = df.join(dfy.apply(lambda x: x.between(df.FIRST.dt.year, df.LAST.dt.year)).astype(int))

df.columns = df.columns.astype(str)

一步一步:

In [160]: years = [1997, 2016, 2000, 1989]

In [161]: years = sorted(years)

In [162]: dfy = pd.DataFrame(pd.Series(years * len(df)).reshape(len(df),len(years)), columns=years)

In [163]: dfy
Out[163]:
   1989  1997  2000  2016
0  1989  1997  2000  2016
1  1989  1997  2000  2016
2  1989  1997  2000  2016
3  1989  1997  2000  2016

In [164]: dfy.apply(lambda x: x.between(df.FIRST.dt.year, df.LAST.dt.year)).astype(int)
Out[164]:
   1989  1997  2000  2016
0     0     1     0     0
1     1     1     1     0
2     0     1     1     0
3     1     0     0     0

In [165]: df = df.join(dfy.apply(lambda x: x.between(df.FIRST.dt.year, df.LAST.dt.year)).astype(int))

In [166]: df.columns = df.columns.astype(str)

In [167]: df
Out[167]:
       FIRST       LAST  1989  1997  2000  2016
0 1991-10-04 1997-04-17     0     1     0     0
1 1988-07-07 2009-02-13     1     1     1     0
2 1995-12-06 2009-10-24     0     1     1     0
3 1989-03-14 1996-04-30     1     0     0     0