我有一个25列23行的数字matrix
和一个长度为25的向量。如何在不使用for
循环的情况下将矩阵的每一行乘以向量?
结果应该是25x23矩阵(与输入大小相同),但每行都乘以向量。
从@ hatmatrix的回答中添加了可重复的示例:
matrix <- matrix(rep(1:3,each=5),nrow=3,ncol=5,byrow=TRUE)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
vector <- 1:5
期望的输出:
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
答案 0 :(得分:69)
我认为你正在寻找sweep()
。
# Create example data and vector
mat <- matrix(rep(1:3,each=5),nrow=3,ncol=5,byrow=TRUE)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
vec <- 1:5
# Use sweep to apply the vector with the multiply (`*`) function
# across columns (See ?apply for an explanation of MARGIN)
sweep(mat, MARGIN=2, vec, `*`)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 2 3 4 5
[2,] 2 4 6 8 10
[3,] 3 6 9 12 15
这是R的核心功能之一,但多年来已经对其进行了改进。
答案 1 :(得分:36)
> MyMatrix <- matrix(c(1,2,3, 11,12,13), nrow = 2, ncol=3, byrow=TRUE)
> MyMatrix
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 11 12 13
> MyVector <- c(1:3)
> MyVector
[1] 1 2 3
你可以使用:
> t(t(MyMatrix) * MyVector)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 11 24 39
或:
> MyMatrix %*% diag(MyVector)
[,1] [,2] [,3]
[1,] 1 4 9
[2,] 11 24 39
答案 2 :(得分:25)
实际上,sweep
不是我计算机上最快的选项:
MyMatrix <- matrix(c(1:1e6), ncol=1e4, byrow=TRUE)
MyVector <- c(1:1e4)
Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option
Rprof()
MyTimerTranspose=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
MyMatrix %*% diag(MyVector) # second option
Rprof()
MyTimerDiag=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
sweep(MyMatrix ,MARGIN=2,MyVector,`*`) # third option
Rprof()
MyTimerSweep=summaryRprof(tmp)$sampling.time
unlink(tmp)
Rprof(tmp <- tempfile(),interval = 0.001)
t(t(MyMatrix) * MyVector) # first option again, to check order
Rprof()
MyTimerTransposeAgain=summaryRprof(tmp)$sampling.time
unlink(tmp)
MyTimerTranspose
MyTimerDiag
MyTimerSweep
MyTimerTransposeAgain
这会产生:
> MyTimerTranspose
[1] 0.04
> MyTimerDiag
[1] 40.722
> MyTimerSweep
[1] 33.774
> MyTimerTransposeAgain
[1] 0.043
除了是最慢的选项之外,第二个选项达到内存限制(2046 MB)。但是,考虑到其余选项,我认为双转置比sweep
要好得多。
修改强>
重复尝试较小的数据:
MyMatrix <- matrix(c(1:1e3), ncol=1e1, byrow=TRUE)
MyVector <- c(1:1e1)
n=100000
[...]
for(i in 1:n){
# your option
}
[...]
> MyTimerTranspose
[1] 5.383
> MyTimerDiag
[1] 6.404
> MyTimerSweep
[1] 12.843
> MyTimerTransposeAgain
[1] 5.428
答案 3 :(得分:2)
对于速度,可以在乘积之前从向量创建矩阵
mat <- matrix(rnorm(1e6), ncol=1e4)
vec <- c(1:1e4)
mat * matrix(vec, dim(mat)[1], length(vec))
library(microbenchmark)
microbenchmark(
transpose = t(t(mat) * vec),
make_matrix = mat * matrix(vec, dim(mat)[1], length(vec), byrow = TRUE),
sweep = sweep(mat,MARGIN=2,vec,`*`))
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# transpose 9.940555 10.480306 14.39822 11.210735 16.19555 77.67995 100 b
#make_matrix 5.556848 6.053933 9.48699 6.662592 10.74121 74.14429 100 a
# sweep 8.033019 8.500464 13.45724 12.331015 14.14869 77.00371 100 b
答案 4 :(得分:0)
使用outer()
或collapse::TRA()
的{{3}}解决方案比这里建议的任何方法都快得多。
答案 5 :(得分:0)
如果你想要速度,你可以使用Rfast::eachrow
。这是最快的...